【题目】已知O是直线AB上一点,将一直角三角尺如图QZ-13(a)放置,一直角边ON在直线AB上,另一直角边OM与AB所形成的∠AOM=90°,射线OC在∠AOM内部.
![]()
(探究)如图(b),将三角尺绕着点O顺时针旋转,当∠AON=∠CON时,试判断OM是否平分∠BOC,并说明理由.
(拓展)若∠AOC=80°时,三角尺OMN绕O点顺时针旋转一周,每秒旋转5°,则多少秒后,∠MOC=∠MOB?
(延伸)在上述条件下,如图(c),旋转三角尺使ON在∠BOC内部,另一边OM在直线AB的另一侧,下面两个结论:①∠NOC-∠BOM的值不变;②∠NOC+∠BOM的值不变.选择其中一个正确的结论说明理由.
参考答案:
【答案】【探究】DM平分∠BOC,理由见解析;【拓展】8秒或44秒后,∠MOC=∠MOB;【延伸】①结论正确,理由见解析.
【解析】
(1)根据图形和题意得出∠AON+∠BOM=90°,∠CON+∠COM=90°,再根据∠AON=∠CON,即可得出OM平分∠BOC;
(2)根据∠AOC=80゜,再分两种情况讨论,当三角板OMN绕O点顺时针旋转40°时,∠MOC=∠MOB和三角板OMN绕O点顺时针旋转220°时,∠MOC=∠MOB,从而得出答案;
(3)分别求出∠NOC=100°-∠BON,∠BOM=90°-∠BON,得出∠NOC-∠BOM=10°即可.
探究:DM平分∠BOC.
理由:因为∠AON+∠BOM=90°,∠CON+∠COM=90°,∠AON=∠CON,
所以∠COM=∠BOM,
所以OM平分∠BOC.
拓展:分两种情况:
因为∠AOC=80°, ①当三角尺OMN绕O点顺时针旋转40°时,∠MOC=∠MOB,
所以40°÷5=8(秒); ②当三角尺OMN绕O点顺时针旋转220°时,∠MOC=∠MOB,
所以220°÷5=44(秒).
综上所述,8秒或44秒后,∠MOC=∠MOB.
延伸:①结论正确.理由:
因为∠NOC=180°-∠AOC-∠BON=100°-∠BON,∠BOM=90°-∠BON,
所以∠NOC-∠BOM=(100°-∠BON)-(90°-∠BON)=10°,
所以①∠NOC-∠BOM的值不变正确.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,边长为6的正六边形ABCDEF的对称中心与原点O重合,点A在x轴上,点B在反比例函数y=
位于第一象限的图象上,则k的值为( ) 
A.9
B.9
C.3
D.3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2
为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:课外兴趣小组活动时,老师提出了如下问题:
如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;
(2)问题拓展:如图3,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,联结EF、CF,那么下列结论①∠DCF=
∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.中一定成立是 (填序号).

图1 图2 图3
-
科目: 来源: 题型:
查看答案和解析>>【题目】在“爱我中华”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8;乙:7,9,6,9,9,则下列说法中错误的是( )
A. 甲、乙得分的平均数都是8 B. 甲得分的众数是8,乙得分的众数是9
C. 甲得分的中位数是9,乙得分的中位数是6 D. 甲得分的方差比乙得分的方差小
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一次大学生一年级新生训练射击比赛中,某小组的成绩如表
环数
6
7
8
9
人数
1
5
3
1
(1)该小组射击数据的众数是 .
(2)该小组的平均成绩为多少?(要写出计算过程)
(3)若8环(含8环)以上为优秀射手,在1200名新生中有多少人可以评为优秀射手?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:

甲、乙射击成绩统计表
平均数
中位数
方差
命中10环的次数
甲
7
乙
1
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
相关试题