【题目】如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=12,AB=10,则AE的长为( )
![]()
A. 16B. 15C. 14D. 13
参考答案:
【答案】A
【解析】
首先证明四边形ABEF是菱形,得出AE⊥BF,OB=OF=6,OA=OE,利用勾股定理计算出AO,从而得到AE的长.
连结EF,AE与BF交于点O,如图,
![]()
∵AO平分∠BAD,
∴∠1=∠2,
∵四边形ABCD为平行四边形,
∴AF∥BE,
∴∠1=∠3,
∴∠2=∠3,
∴AB=EB,
同理:AF=BE,
又∵AF∥BE,
∴四边形ABEF是平行四边形,
∴四边形ABEF是菱形,
∴AE⊥BF,OB=OF=6,OA=OE,
在Rt△AOB中,由勾股定理得:OA=
=8,
∴AE=2OA=16.
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,某校在开发区一块宽为120m的矩形用地上新建分校区,规划图纸上把它分成①②③三个区域,区域①和区域②为正方形,区域①为教学区;区域②为生活区;区域③为活动区,设这块用地长为xm,区域③的面积为ym2.
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)若区域③的面积为3200m2,那么这块用地的长应为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在数轴上点A表示数a,点C表示数c,且
.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.
比如,点A与点B之间的距离记作AB.
(1)求AC的值;
(2)若数轴上有一动点D满足CD+AD=36,直接写出D点表示的数;
(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A、C的速度分别为每秒 3个单位长度,每秒4个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值.
②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,请求出m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,以下几种说法中:①
和
是同位角;②
和
是同位角;③
和
是内错角;④
和
是同旁内角;⑤
和
是同位角;⑥
和
是同位角;正确的个数是( )
A.3B.4C.5D.6
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s), 甲乙两点之间距离为y(cm).
(1)当甲追上乙时,x = .
(2)请用含x的代数式表示y.
当甲追上乙前,y= ;
当甲追上乙后,甲到达C之前,y= ;
当甲到达C之后,乙到达C之前,y= .

问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.
(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.
(2)若从4:00起计时,求几分钟后分针与时针第一次重合.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,
(1)若∠AOE=40°,求∠BOD的度数;
(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)
(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)先化简再求值:
,其中a、b满足
(2)已知a+b=4,ab=-2,求代数式(5a-4b-4ab)-3(a-2b-ab)的值.
相关试题