【题目】在平面直角坐标系中,形如
的点涂上红色(其中
、
为整数),称为红点,其余不涂色,那么抛物线
上有( )个红点.
A.
个 B.
个 C.
个 D. 无数个
参考答案:
【答案】B
【解析】
根据二次函数图象上的点的坐标特征知,形如(m,n2)的点(其中m、n为整数)均满足抛物线方程y=x2﹣2x+9,所以有n2=m2﹣2m+9,故可得出n2=(m﹣1)2+8,又因为m、n为整数,据此求m、n的值.
∵设点(m,n2)是抛物线y=x2﹣2x+9上的一个标准点,则n2=m2﹣2m+9,即n2﹣(m﹣1)2=8,∴(n﹣m+1)(n+m﹣1)=8.
∵m、n为整数,且n﹣m与n+m的奇偶性相同,∴n﹣m+1=2,n+m﹣1=4或n﹣m+1=4,n+m﹣1=2或n﹣m+1=﹣2,n+m﹣1=﹣4或n﹣m+1=﹣4,n+m﹣1=﹣2,∴抛物线y=x2﹣2x+9上有4个红点.
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,直线
与
轴、
轴分别交于点
、
,与双曲线
交于第一象限的点
和第三象限的点
,
点的纵坐标为

求
和
的值;
求不等式:
的解集
过
轴上的点
作平行于
轴的直线
,分别与直线
和双曲线
交于点
、
,求
的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】 (1)阅读理解:
我们知道,只用直尺和圆规不能解决的三个经典的希腊问题之一是三等分任意角,但是这个任务可以借助如图所示的一边上有刻度的勾尺完成,勾尺的直角顶点为P,“宽臂”的宽度=PQ= QR = RS,(这个条件很重要哦!)勾 尺的一边 MN 满足M, N, Q三点共线(所以PQ ⊥ MN).
下面以三等分∠ABC为例说明利用勾尺三等分锐角的过程:
第一步:画直线DE使DE //BC,且这两条平行线的距离等于PQ;
第二步:移动勾尺到合适位置,使其顶点P落在DE上,使勾尺的MN边经过点B,同时让点R落在∠ABC的BA边上;
第三步:标记此时点Q和点P所在位置,作射线BQ和射线BP:
请完成第三步操作,图中∠ABC的三等分线是射线 、 .
(2)在(1)的条件下补全三等分∠ABC的主要证明过程:
∵ ,BQ ⊥ PR,
∴BP= BR.(线段垂直平分线上的点与这条线段两个端点的距离相等)
∴∠RBQ=∠PBQ,
∵PT⊥BC,PQ⊥BQ,PT=PQ,
∴∠ = ∠ . (角的内部到角的两边距离相等的点在角的平分线上)
∴∠ = = ∠ = ∠
(3)在(1)的条件下探究:
∠ABS=
∠ABC是否成立?如果成立,请说明理由;如果不成立,请在下图中∠ABC外部画出∠ABV =
∠ABC(无需写画法,保留画图痕迹即可) 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图 1,在△ ABC中,∠ACB = 2∠B, ∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥ AO于H,分别交直线AB、AC、BC于点N、E、M
(1)当直线l经过点C时(如图 2),求证:NH = CH;
(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;
(3)请直接写出BN、CE、CD之间的等量关系.



-
科目: 来源: 题型:
查看答案和解析>>【题目】有下列六个命题:①相等的角是对顶角;②两直线平行,同位角相等;③若一个三角形的两个内角分别为
和
,则这个三角形是直角三角形;④全等三角形的对应角相等。其中逆命题是假命题的个数有( )A.0个B.1个C.2个D.3个
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,抛物线
的部分图象如图,则下列说法:①对称轴是直线
;②当
时,
;③
;④方程
无实数根,其中正确的有________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数
.图象的顶点为
,其图象与
轴的交点
、
的横坐标分别为
、
,与
轴负半轴交于点
.下面五个结论:①
;②
;③当
时,
随
值的增大而增大;④当
时,
;⑤只有当
时,
是等腰直角三角形.那么,其中正确的结论______.(只填你认为正确结论的序号)
相关试题