【题目】在直角坐标系中,O为坐标原点,A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有( )
A.4个B.3个C.2个D.1个
参考答案:
【答案】A
【解析】
有三种情况:当OA=OP时,以O为圆心,以OA为半径画弧交x轴于两点;当OA=AP时,以A为圆心,以OA为半径画弧交x轴于一点;当OP=AP时,根据线段垂直平分线的性质作OA的垂直平分线,交x轴于点P,综上即可得答案.
如图,当OA=OP时,以O为圆心,以OA为半径画弧交x轴于两点(P2、P3),
当OA=AP时,以A为圆心,以OA为半径画弧交x轴于一点(P1),
当OP=AP时,作OA的垂直平分线,交x轴于一点(P4).
∴符合使△AOP为等腰三角形的点P有4个,
![]()
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题满分8分)
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.

(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图①,在△ABC中,BC=AC,在△CDE中,CE=CD,现把两个三角形的C点重合,且使∠BCA=∠ECD,连接BE、AD.
(1)求证:BE=AD
(2)若将△ECD绕点C旋转至图②、③所示的情况时,其余条件不变,BE与AD还相等么?若相等,请给与证明;若不相等,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系
中,抛物线
与
轴的交点分别为
,
.
求证:抛物线总与
轴有两个不同的交点;
若
,求此抛物线的解析式.
已知
轴上两点
,
,若抛物线
与线段
有交点,请写出
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】悦达汽车4S店“十一”黄金周销售某种型号汽车,该型号汽车的进价为30万元/辆,若黄金周期间销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,黄金周期间销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,悦达汽车4S店计划黄金周期间销售利润25万元,那么需售出多少辆汽车?(注:销售利润=销售价﹣进价)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,某幼儿园有一道长为
米的墙,计划用
米长的围栏利用一面墙如图围成一个矩形草坪
.设该矩形草坪
边的长为
米,面积为
平方米.
求出
与
的函数关系式并写出
的取值范围;
如果所围成的矩形草坪面积为
平方米,试求
边的长;
按题目的设计要求,________(填“能”或“不能”)围成面积为
平方米的矩形草坪.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.
(1)求小张跑步的平均速度;
(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.
相关试题