【题目】如图,在Rt△ABC中,∠BAC=90°,∠B=60°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F. ![]()
(1)求证:BD是⊙O的切线;
(2)若BC=2
,E是半圆
上一动点,连接AE、AD、DE. 填空:
①当
的长度是时,四边形ABDE是菱形;
②当
的长度是时,△ADE是直角三角形.
参考答案:
【答案】
(1)证明:连接OD,如图,
∵∠BAC=90°,点D为BC的中点,
∴DB=DA=DC,
∵∠B=60°,
∴△ABD为等边三角形,
∴∠DAB=∠ADB=60°,∠DAC=∠C=30°,
而OA=OD,
∴∠ODA=∠OAD=30°,
∴∠ODB=60°+30°=90°,
∴OD⊥BC,
∴BD是⊙O的切线;
(2)
π;
π或π
【解析】(2)解:①∵△ABD为等边三角形, ∴AB=BD=AD=CD=
,
在Rt△ODC中,OD=
CD=1,
当DE∥AB时,DE⊥AC,
∴AD=AE,
∵∠ADE=∠BAD=60°,
∴△ADE为等边三角形,
∴AD=AE=DE,∠ADE=60°,
∴∠AOE=2∠ADE=120°,
∴AB=BD=DE=AE,
∴四边形ABDE为菱形,
此时
的长度=
=
π;
②当∠ADE=90°时,AE为直径,点E与点F重合,此时
的长度=
=π;
当∠DAE=90°时,DE为直径,∠AOE=2∠ADE=60°,此时
的长度=
=
π,
所以当
的长度为
π或π时,△ADE是直角三角形.
故答案为
π;
π或π.![]()
(1)连接OD,如图,利用斜边上的中线性质得DB=DA=DC,则可判断△ABD为等边三角形得到∠DAB=∠ADB=60°,∠DAC=∠C=30°,然后计算出∠ODB=90°,从而根据切线的判定定理可判定BD是⊙O的切线;(2)解:①利用△ABD为等边三角形得到AB=BD=AD=CD=
,则可计算出OD=
CD=1,当DE∥AB时,DE⊥AC,先证明△ADE为等边三角形,再证明四边形ABDE为菱形,然后利用弧长公式计算此时
的长度;②讨论:当∠ADE=90°时,AE为直径,利用弧长公式可计算出此时
的长度;当∠DAE=90°时,DE为直径,利用圆周角定理得到∠AOE=2∠ADE=60°,然后利用弧长公式可计算出此时
的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,AD=8,AB=6,点E为射线DC上一个动点,把△ADE沿AE折叠,使点D落在点F处,若△CEF为直角三角形时,DE的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某食品厂“端午节”期间,为了解市民对肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)四种不同口味粽子的喜爱情况,对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?
(2)将不完整的条形图补充完整.
(3)若居民区有6000人,请估计爱吃C粽的人数? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3800米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+2的图象与反比例函数y=
的图象交于点P,P在第一象限,PA⊥x轴于点A,PB⊥y轴于点B,一次函数的图象分别交x轴、y轴于点C、D,且S△PBD=4,
=
. 
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接写出当x>0时,一次函数的值大于反比例函数值的x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
5台
1800元
第二周
4台
10台
3100元
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
相关试题