【题目】如图,
的对角线
、
交于点
,
平分
交
于点
,
,
,连接
.下列结论:①
;②
平分
;③
;④
其中正确的个数有( )
![]()
A.
个B.
个C.
个D.
个
参考答案:
【答案】C
【解析】
求得∠ADB=90°,即AD⊥BD,即可得到SABCD=ADBD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即可得到AO>DE;依据OE是△ABD的中位线,即可得到
。
解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,
∴∠ADE=∠DAE=60°=∠AED,
∴△ADE是等边三角形,
![]()
∴E是AB的中点,
∴DE=BE,
![]()
∴∠ADB=90°,即AD⊥BD,
∴SABCD=ADBD,故①正确;
∵∠CDE=60°,∠BDE=30°,
∴∠CDB=∠BDE,
∴DB平分∠CDE,故②正确;
∵Rt△AOD中,AO>AD,
∴AO>DE,故③错误;
∵O是BD的中点,E是AB的中点,
∴OE是△ABD的中位线,
∴
,故④正确;
正确的有3个
故选:C
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,AF与DE相交于点G,BF与CE相交于点H.
(1)求证:四边形EHFG是平行四边形;
(2)①若四边形EHFG是菱形,则平行四边形ABCD必须满足条件 ;
②若四边形EHFG是矩形,则平行四边形ABCD必须满足条件 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:
①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤

正确的有( )

A. ①② B. ①④⑤ C. ①②④⑤ D. ①②③④⑤
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD与矩形EFGH在直线l的同侧,边AD,EH在直线l上,且AD=5cm,EH=4cm,EF=3cm.保持正方形ABCD不动,将矩形EFGH沿直线l左右移动,连接BF,CG,则BF+CG的最小值为_____________cm

-
科目: 来源: 题型:
查看答案和解析>>【题目】某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的
倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲
乙
进价(元/件)
22
30
售价(元/件)
29
40
(1)该超市购进甲、乙两种商品各多少件?
(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB与CD相交于点O,OF,OD分别是∠AOE,∠BOE的平分线.

(1)写出∠DOE的补角;
(2)若∠BOE=62°,求∠AOD和∠EOF的度数;
(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?
相关试题