【题目】某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的
倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)
甲 | 乙 | |
进价(元/件) | 22 | 30 |
售价(元/件) | 29 | 40 |
(1)该超市购进甲、乙两种商品各多少件?
(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?
参考答案:
【答案】(1)甲种商品150件、乙种商品90件.(2)1950元.(3)8.5折
【解析】
(1)设第一次购进甲种商品x件,则购进乙种商品(
x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;
(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;
(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.
解:(1)设第一次购进甲种商品x件,则购进乙种商品(
x+15)件,
根据题意得:22x+30(
x+15)=6000,
解得:x=150,
∴
x+15=90.
答:该超市第一次购进甲种商品150件、乙种商品90件.
(2)(29﹣22)×150+(40﹣30)×90=1950(元).
答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.
(3)设第二次乙种商品是按原价打y折销售,
根据题意得:(29﹣22)×150+(40×
﹣30)×90×3=1950+180,
解得:y=8.5.
答:第二次乙商品是按原价打8.5折销售.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为保护学生的身体健康,某中学课桌椅的高度都是按一定的关系(一次函数)配套设计的,下表列出5套符合条件的课桌椅的高度. ①假设课桌的高度为ycm椅子的高度为xcm,请确定y与x的函数关系式;②现有一把高37cm的椅子和一张高71.5cm的课桌,它们是否配套?为什么?
椅子高度x(cm)
45
42
39
36
33
桌子高度y(cm)
84
79
74
69
64
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人;1辆A型车和2辆B型车可以载学生110人.(1)A、B型车每辆可分别载学生多少人?(2)若租一辆A型车需要1000元,一辆B型车需1200元,请你设计租车方案,使得恰好运送完学生并且租车费用最少.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.
(1)求证:AE=CF.
(2)求证:四边形BFDE为矩形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰梯形ABCD中,AD∥BC,M、N分别为AD、BC的中点,E、F分别是BM、CM的中点.
⑴求证:△ABM≌△DCM;
⑵四边形MENF是什么图形?请证明你的结论;
⑶若四边形MENF是正方形,则梯形的高与底边BC有何数量关系?并请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC 中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,
①若CE∥AB,求∠BEC的度数;
②若CE平分∠ACD,求∠BEC的度数.
(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.
如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(规定0°< ∠OAC < 90°).
(1)∠ABO的度数为 °,△AOB (填“是”或“不是”灵动三角形);
(2)若∠BAC=60°,求证:△AOC为“灵动三角形”;
(3)当△ABC为“灵动三角形”时,求∠OAC的度数.
相关试题