【题目】已知⊙O的直径20,OP长为8,则过P的弦中,弦长为整数的弦共有( )条.
A.1 B.9 C.17 D.16
参考答案:
【答案】D
【解析】
试题分析:求出过P点的弦的长度的取值范围,取特殊解,根据对称性综合求解.
解:如图,AB是直径,OA=10,OP=8,过点P作CD⊥AB,交圆于点C,D两点.
由垂径定理知,点P是CD的中点,
∴PC=4,
在直角三角形OPC中,由勾股定理求得,PC=6,
∴CD=12,则CD是过点P最短的弦长为12;AB是过P最长的弦,长为20.
故过点P的弦的长度都在12~20之间;
因此弦长为12,13,14,15,16,17,18,19,20;
当弦长为12、20时,过P点的弦分别为弦CD和过P点的直径,分别有一条;
当弦长为13,14,15,16,17,18,19时,根据圆的对称性知,符合条件的弦应该有两条;
故弦长为整数的弦共有16条.
故选D.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线AB经过⊙O上的点C,并且OA=OB,CA=CB.
(1)求证:直线AB是⊙O的切线;
(2)如图2,直线BO与⊙O交于点D,E,若BD=4,AB=16,求AE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC中,AB=AC,D是BC边上任意一点,以点A为中心,取旋转角等于∠BAC,把△ABD绕点A逆时针旋转得到△ACM.
(1)如图1,若∠BAC=50°,则∠BCM= ;
(2)如图2,在BC上取点E,使∠DAE=
∠BAC,求证:DE<BD+EC;(3)如图3,在(2)的条件下,若∠BAC=90°,BD=1,EC=2,求DE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
与抛物线
相交于A
和B(4,n)两点,点P是抛物线位于线段AB上方异于点A,B的一个动点,过点P作PQ⊥x轴,交线段AB于点Q.(1)求抛物线的解析式;
(2)在P点运动过程中,线段PQ的长是否存在最大值?若存在,求出这个最大值,并求出此时P点的坐标;若不存在,请说明理由;
(3)直线AB与y轴交于点C,与x轴交于点D,若△PBQ与△ODC相似,求点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(阅读理解)
点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.
例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.
(知识运用)
如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.
(1)数 所表示的点是{M,N}的奇点;数 所表示的点是{N,M}的奇点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,当P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.
(1)证明:四边形AGCH是菱形:
(2)求菱形AGCH的周长.

相关试题