【题目】已知抛物线y=ax2+bx+c(a≠0)是由抛物线y=﹣x2+x+2先作关于y轴的轴对称图形,再将所得到的图象向下平移3个单位长度得到的,点Q1(﹣2.25,q1),Q2(1.5,q2)都在抛物线y=ax2+bx+c(a≠0)上,则q1,q2的大小关系是( )
A. q1>q2 B. q1<q2 C. q1=q2 D. 无法确定
参考答案:
【答案】A
【解析】
根据关于y轴对称的抛物线形状相同、顶点横坐标互为相反数、纵坐标相同得出抛物线y=ax2+bx+c的解析式,再分别求出q1、q2的值,即可得出答案.
∵y=-x2+x+2=-(x-
)2+
,
∴抛物线y=-x2+x+2先作关于y轴的轴对称抛物线解析式为y=-(x+
)2+
,
则q1=-(-
+
)2+
=-
,q2=-(
+
)2+
=-
,
∵-
>-
,
∴q1>q2,
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=-
x+b的图象与x轴,y轴分别交于点A,B,与一次函数y=
x的图象交于点M,点M的横坐标为
,在x轴上有一点P(a,0),过点P作x轴的垂线,分别交一次函数y=-
x+b和一次函数y=
x的图象于点C,D.
(1)点M的纵坐标是 ;b的值是 ;
(2)求线段AB的长;
(3)当CD=AB时,请直接写出a的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有一笔直的公路连接M,N两地,甲车从M地驶往N地,速度为60km/h,乙车从M地驶往N地,速度为40km/h,丙车从N地驶往M地,速度为80km/h,三辆车同时出发,先到目的地的车停止不动.途中甲车发生故障,于是停车修理了2.5h,修好后立即按原速驶往N地.设甲车行驶的时间为t(h),甲、丙两车之间的距离为S1(km).甲、乙两车离M地的距离为S2(km),S1与t之间的关系如图1所示,S2与t之间的关系如图2所示.根据题中的信息回答下列问题:

(1)①图1中点C的实际意义是 ;
②点B的横坐标是 ;点E的横坐标是 ;点Q的坐标是 ;
(2)请求出图2中线段QR所表示的S2与t之间的关系式;
(3)当甲、乙两车距70km时,请直接写出t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的直径为10,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】(12分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.

(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面直角坐标系中,O为坐标原点,直线y=kx+b经过点A(﹣2,﹣1),交y轴负半轴于点B,且∠ABO=30°,过点A作直线AC⊥x轴于点C,点P在直线AC上.

(1)k= ;b= ;
(2)设△ABP的面积为S,点P的纵坐标为m.
①当m>0时,求S与m之间的函数关系式;
②当S=2时,求m的值;
③当m>0且S=4时,以BP为边作等边△BPQ,请直接写出符合条件的所有点Q的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.

相关试题