【题目】已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.
(1)求证:BF=AC;
(2)求证:CE=
BF.
![]()
参考答案:
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)利用ASA判定Rt△DFB≌Rt△DAC,从而得出BF=AC.
(2)利用ASA判定Rt△BEA≌Rt△BEC,得出CE=AE=
AC,再由BF=AC,利用等量代换即可得结论.
(1)∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形,
∴BD=CD,
∵CD⊥AB,BE⊥AC,
∴∠BDC=∠CDA=90°,∠BEC=∠BEA=90°,
∴∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,
又∵∠BFD=∠EFC,
∴∠DBF=∠DCA.
在Rt△DFB和Rt△DAC中,
,
∴Rt△DFB≌Rt△DAC(ASA),
∴BF=AC;
(2)∵BE平分∠ABC,
∴∠ABE=∠CBE.
在Rt△BEA和Rt△BEC中
,
∴Rt△BEA≌Rt△BEC(ASA),
∴CE=AE,
∵CE+AE=AC,
∴CE=
AC,
又由(1)知BF=AC,
∴CE=
BF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?
大数学家海伦曾用轴对称的方法巧妙的解决了这问题.

如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.
请你在下列的阅读、应用的过程中,完成解答.
(1)理由:如图③,在直线l上另取任一点C′,连接AC′,BC′,B′C′,
∵直线l是点B,B′的对称轴,点C,C′在l上,
∴CB=_______,C′B=_______.
∴AC+CB=AC+CB′=_______.
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′,即AC+CB最小.
归纳小结:
本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).
本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.
(2)模型应用
①如图 ④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点,求EF+FB的最小值.
解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连接ED交AC于F,则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是_______.

②如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是_______;
③如图⑥,一次函数y=-2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求PC+PD的最小值,并写出取得最小值时P点坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)请直接写出线段AF,AE的数量关系 ;
(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;
(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
(m>0)与x轴相交于点A,B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点(2,2),求抛物线的解析式;
(2)在(1)的条件下,抛物线的对称轴上是否存在一点H,使AH+CH的值最小,若存在,求出点H的坐标;若不存在,请说明理由;
(3)在第四象限内,抛物线上是否存在点M,使得以点A,B,M为顶点的三角形与△ACB相似?若存在,求出m的值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列图案中既是中心对称图形,又是轴对称图形的是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:
(1) 分别写出当0≤x≤100和x>100时,y与x的函数关系式
(2) 利用函数关系式,说明电力公司采取的收费标准
(3) 若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在半径为6cm的⊙O中,点A是劣弧BC的中点,点D是优弧BC上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6
cm;③sin∠AOB=
;④四边形ABOC是菱形.其中正确结论的序号是( )
A. ①③ B. ①②③④ C. ②③④ D. ①③④
相关试题