【题目】已知:如图,边长为1的正方形ABCD中,AC 、DB交于点H.DE平分∠ADB,交AC于点E.联结BE并延长,交边AD于点F.
(1)求证:DC=EC;
(2)求△EAF的面积.
![]()
![]()
参考答案:
【答案】(1)答案见解析;(2)![]()
【解析】试题分析:(1)根据正方形的性质可得∠ADH=∠HDC=∠DCH=∠DAE=45°,由DE平分∠ADB,可得∠ADE=∠EDH,再由∠DAE+∠ADE=∠DEC,∠EDH+∠HDC=∠EDC,所以∠EDC=∠DEC,即可得DC=EC;(2)根据(1)的结论和勾股定理即可求得AC=
, E=
-1,在Rt△BHC中,求得BH=
,根据三角形的面积公式即可求得△BEC的面积,再由AD∥BC,可得△AFE∽△CBE,根据相似三角形面积的比等于相似比的平方即可求得△EAF的面积.
试题解析:
(1)∵正方形ABCD,
∴DC=BC=BA=AD,∠BAD=∠ADC=∠DCB=∠CBA=90°,AH=DH=CH=BH,AC⊥BD,
∴∠ADH=∠HDC=∠DCH=∠DAE=45°.
又∵DE平分∠ADB,
∴∠ADE=∠EDH,
∵∠DAE+∠ADE=∠DEC,∠EDH+∠HDC=∠EDC,
∴∠EDC=∠DEC,
∴DC=EC;
![]()
(2)∵正方形ABCD,
∴AD∥BC
,∴△AFE∽△CBE∴
;
∵AB=BC=DC=EC=1,AC=
,
∴AE=
,
Rt△BHC中,BH=
BC=
,
∴在△BEC中,BH⊥EC,
,
∴
,
∴
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,点E为AB边上一点,将△AED沿直线DE翻折,点A落在点P处,且DP⊥BC,垂足为F.
(1)求∠EDP的度数.
(2)过D点作DG⊥DC交AB于G点,且AG=FC,
求证:四边形ABCD为菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】经市场调查,发现进价为40元的某童装每月的销售量y(件)与售价x(元)满足一次函数关系,且相关信息如下:
售价x(元)
60
70
80
90
……
销售量y(件)
280
260
240
220
……
(1)求这个一次函数关系式;
(2)售价为多少元时,当月的利润最大?最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD内接于⊙O,∠BAD=90°,过C作CE⊥AD垂足为E,且∠EDC=∠BDC.
(1)求证:CE是⊙O的切线;
(2)若DE+CE=4,AB=6,求BD的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.
(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?
(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?
(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t1,t2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A地在数轴上表示的数为-16,AB两地相距50个单位长度.小明从A地出发去B地,以每分钟2个单位长度的速度行进,第一次他向左1单位长度,第二次向右2单位长度,第三次再向左3单位长度,第四次又向右4单位长度…,按此规律行进.

(1)求出B地在数轴上表示的数;
(2)若B地在原点的右侧,经过第8次行进后小明到达点P,此时点P与点B相距几个单位长度?8次运动完成后一共经过了几分钟?
(3)若经过n次(n为正整数)行进后,小明到达点Q,请你直接写出:点Q在数轴上表示的数应如何表示?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12千克,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2千克,但耗水量是甲车间的一半.已知A产品售价为30元/千克,水价为5元/吨.设甲车间用x箱原材料生产A产品.
(1)用含x的代数式表示:乙车间用________箱原材料生产A产品;
(2)求两车间生产这批A产品的总耗水量;
(3)若两车间生产这批产品的总耗水为200吨,则该厂如何分配两车间的生产原材料?
(4)用含x的代数式表示这次生产所能获取的利润并化简.(注:利润=产品总售价-购买原材料成本-水费)
相关试题