【题目】有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则
等于( )
A.
B.
C.
D.![]()
参考答案:
【答案】D
【解析】
根据已知条件表示出价格变化前后两种糖果的平均价格,进而得出等式求出即可.
解:∵甲、乙两种糖果,原价分别为每千克a元和b元,
两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,
∴两种糖果的平均价格为:
,
∵甲种糖果单价下降15%,乙种糖果单价上涨20%,
∴两种糖果的平均价格为:
,
∵按原比例混合的糖果单价恰好不变,
∴
=
,
整理,得
15ax=20by
∴
,
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,正方形ABCD是由两个长为a、宽为b的长方形和两个边长分别为a、b的正方形拼成的.

(1)利用正方形ABCD面积的不同表示方法,直接写出
、
、ab之间的关系式,这个关系式是 ;(2)若m满足
,请利用(1)中的数量关系,求
的值;(3)若将正方形EFGH的边
、
分别与图①中的PG、MG重叠,如图②所示,已知PF=8,NH=32,求图中阴影部分的面积(结果必须是一个具体数值). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=
(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为E,求△CDE的面积;
(3)直接写出不等式kx+b≤
的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A是反比例函数y=
在第一象限图象上一点,连接OA,过点A作AB∥x轴(点B在点A右侧),连接OB,若OB平分∠AOX,且点B的坐标是(8,4),则k的值是( )
A.6B.8C.12D.16
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图已知函数y=
(k>0,x>0)的图象与一次函数y=mx+5(m<0)的图象相交不同的点A、B,过点A作AD⊥x轴于点D,连接AO,其中点A的横坐标为x0,△AOD的面积为2.(1)求k的值及x0=4时m的值;
(2)记[x]表示为不超过x的最大整数,例如:[1.4]=1,[2]=2,设t=ODDC,若﹣
<m<﹣
,求[m2t]值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】用适当的方法解下列方程:
(1)(6x-1)2=25;
(2)x2-2x=2x-1;
(3)x2-
x=2;(4)x(x-7)=8(7-x).
相关试题