【题目】如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.![]()
(1)求证:AD平分∠CAB;
(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.
①试判断DF与DH的数量关系,并说明理由;
②求⊙O的半径.
参考答案:
【答案】
(1)
证明:如图,连接OD,
![]()
∵⊙O与BC相切于点D,
∴OD⊥BC,
∵∠C=90°,
∴OD∥AC,
∴∠CAD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠CAD=∠BAD,
∴AD平分∠CAB
(2)
解:①DF=DH,理由如下:
∵FH平分∠AFE,
∴∠AFH=∠EFH,
又∠DFG=∠EAD=∠HAF,
∴∠DFG=∠EAD=∠HAF,
∴∠DFG+∠GFH=∠HAF+∠HFA,
即∠DFH=∠DHF,
∴DF=DH.
②设HG=x,则DH=DF=1+x,
∵OH⊥AD,
∴AD=2DH=2(1+x),
∵∠DFG=∠DAF,∠FDG=∠FDG,
∴△DFG∽△DAF,
∴
,
∴
,
∴x=1,
∵DF=2,AD=4,
∵AF为直径,
∴∠ADF=90°,
∴AF=
= ![]()
∴⊙O的半径为 ![]()
【解析】(1)连接OD.先证明OD∥AC,得到∠CAD=∠ODA,再根据OA=OD,得到∠OAD=∠ODA,进而得到∠CAD=∠BAD,即可解答.(2)①DF=DH,利用FH平分∠AFE,得到∠AFH=∠EFH,再证明∠DFH=∠DHF,即可得到DF=DH.②设HG=x,则DH=DF=1+x,证明△DFG∽△DAF,得到
,即
,求出x=1,再根据勾股定理求出AF,即可解答.本题考查了切线的性质,相似三角形的判定和性质,本题涉及的知识点:两直线平行,等腰三角形的判定、三角形相似.
【考点精析】通过灵活运用角平分线的性质定理和垂径定理,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的数阵是由50个偶数排成的.
(1)图中框内的4个数有什么关系?
(2)在数阵图中任意作一类似于(1)中的框,设其中的一个数为
,那么其他三个数怎样表示?(3)如果四个数的和是172,能否求出这4个数?
(4)如果四个数的和是322,能否求出这4个数?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).
(1)求这个一次函数的表达式.
(2)求该函数图象与坐标轴围成的三角形的面积.
(3)判断点C(2,2)是在直线AB的上方(右边)还是下方(左边).

-
科目: 来源: 题型:
查看答案和解析>>【题目】孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.
(1)求A种,B种树木每棵各多少元?
(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为2
,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F.(1)求证:AF=BE;
(2)求点E到BC边的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,已知抛物线y=x2+bx+c的顶点M的坐标为(﹣1,﹣4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C.

(1)填空:b= , c= , 直线AC的解析式为
(2)直线x=t与x轴相交于点H.
①当t=﹣3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若∠COD=∠MAN,求出此时点D的坐标;
②当﹣3<t<﹣1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为
,求此时t的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一副三角尺的直角顶点重合在一起.
(1)若 OB 是∠DOC 的角平分线,求∠AOD 的补角的度数是多少?
(2)若 ∠COB 与 ∠DOA 的比是 2:7,求 ∠BOC 的度数.

相关试题