【题目】在△ABC中,AB、BC的垂直平分线相交于三角形内一点O,下列结论中,错误的是( )
A. 点O在AC的垂直平分线上
B. △AOB、△BOC、△COA都是等腰三角形
C. ∠OAB+∠OBC+∠OCA=90°
D. 点O到AB、BC、CA的距离相等
参考答案:
【答案】D
【解析】试题分析:根据垂直平分线的性质得:O也是AC垂直平分线上的点,则O到三个顶点的距离相等,可以得△AOB、△BOC、△COA都是等腰三角形,且根据等边对等角得:∠OAB=∠ABO,∠OBC=∠OCB,∠OAC=∠OCA,再由三角形内角和定理得:∠OAB+∠OBC+∠OCA=90°;
三角形的角平分线的交点到三边的距离相等.
解:A、连接AO、BO、CO,
![]()
∵AB、BC的垂直平分线相交于三角形内一点O,
∴AO=BO,BO=CO,
∴AO=CO,
∴点O在AC的垂直平分线上,
所以选项A正确;
B、∵AO=BO,BO=CO,AO=CO,
∴△AOB、△BOC、△COA都是等腰三角形,
所以选项B正确;
C、∵AO=BO,BO=CO,AO=CO,
∴∠OAB=∠ABO,∠OBC=∠OCB,∠OAC=∠OCA,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠OAB+∠OBC+∠OCA=90°,
故选项C正确;
D、∵点O是三边垂直平分线的交点,
∴OA=OB=OC,
但点O到AB、BC、CA的距离不一定相等;
所以选项D错误;
本题选择错误的,
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
(a≠0)经过A(﹣1,0)、B(3,0)、C(0,﹣3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当点P到点A、点B的距离之和最短时,求点P的坐标;
(3)点M也是直线l上的动点,且△MAC为等腰三角形,请直接写出所有符合条件的点M的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】写出命题“如果a=b,那么3a=3b”的逆命
题: -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:
①△BDF和△CEF都是等腰三角形;
②DE=BD+CE;
③△ADE的周长等于AB与AC的和;
④BF=CF.
其中正确的有( )

A. ①②③ B. ①②③④ C. ①② D. ①
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E不与点A重合时,过点E作EF⊥AD于点F,作EG∥AD交AC于点G,过点G作GH⊥AD交AD(或AD的延长线)于点H,得到矩形EFHG,设点E运动的时间为t秒
(1)求线段EF的长(用含t的代数式表示);
(2)求点H与点D重合时t的值;
(3)设矩形EFHG与菱形ABCD重叠部分图形的面积与S平方单位,求S与t之间的函数关系式;
(4)矩形EFHG的对角线EH与FG相交于点O′,当OO′∥AD时,t的值为 ;当OO′⊥AD时,t的值为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是__.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.
(1)求证:AD=CE;
(2)求∠DFC的度数.

相关试题