【题目】二次函数y=ax2+bx+c的图象如图,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a﹣b=0;④a﹣b+c>0;⑤9a﹣3b+c>0.其中正确的结论有_____.
![]()
参考答案:
【答案】①②③④
【解析】
根据抛物线的开口方向、与y轴的交点和对称轴即可求出a、b、c的符号,从而判断①;然后根据抛物线与x轴的交点个数即可判断②;根据抛物线对称轴公式即可判断③;根据当x=-1时,y>0,代入即可判断④;利用抛物线的对称性可得当x=﹣3时,y<0,然后代入即可判断⑤.
解:由图象可知:a<0,c>0,
又∵对称轴是直线x=﹣1,
∴根据对称轴在y轴左侧,a,b同号,可得b<0,
∴abc>0,
故①正确;
∵抛物线与x轴有两个交点,
∴△=b2﹣4ac>0,
∴4ac<b2,
故②正确;
∵对称轴是直线x=﹣1,
∴﹣
=﹣1,
∴b=2a,
∴2a﹣b=0,
故③正确;
∵当x=﹣1时,y>0,
∴a﹣b+c>0,
故④正确;
∵对称轴是直线x=﹣1,且由图象可得:当x=1时,y<0,
∴当x=﹣3时,y<0,
∴9a﹣3b+c<0,
故⑤错误.
综上,正确的有①②③④.
故答案为:①②③④.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
,
,
,半圆
的直径
.点
与点
重合,半圆
以
的速度从左向右移动,在运动过程中,点
、
始终在
所在的直线上.设运动时间为
,半圆
与
的重叠部分的面积为
.
(1)当
时,设点
是半圆
上一点,点
是线段
上一点,则
的最大值为_________;
的最小值为________.(2)在平移过程中,当点
与
的中点重合时,求半圆
与
重叠部分的面积
;(3)当
为何值时,半圆
与
的边所在的直线相切? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以
cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一副直角三角板如图放置,其中BC=6,EF=8,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】央视“经典咏流传”开播以来受到社会广泛关注.我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:
图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”.
(1)被调查的总人数是_____________人,扇形统计图中C部分所对应的扇形圆心角的度数为_______.
(2)补全条形统计图;
(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有__________人;
(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.

-
科目: 来源: 题型:
查看答案和解析>>【题目】草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季试销售成本为每千克18元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元.经试销发现,销售量y(kg)与销售单价x(元/kg)符合一次函数关系,如图是y与x的函数关系图象.

(1)求y与x的函数解析式;
(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线 BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.
(1)求证:AE为⊙O的切线.
(2)当BC=8,AC=12时,求⊙O的半径.
(3)在(2)的条件下,求线段BG的长.

相关试题