【题目】如图,在平面直角坐标系中,函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,OC=3OA.![]()
(1)求这个二次函数的表达式;
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
参考答案:
【答案】
(1)
解:∵点B的坐标为(3,0),OB=OC,
∴点C的坐标为(0,﹣3),
又∵OC=3OA,
∴OA=1,
∴点A的坐标为(﹣1,0),
将A、B、C三点坐标代入可得:
,
解得:
,
故这个二次函数的表达式为:y=x2﹣2x﹣3
(2)
解:在该抛物线上存在点F(2,﹣3),使以点A、C、E、F为顶点的四边形为平行四边形.
理由:由(1)得D(1,﹣4),则直线CD的解析式为:y=﹣x﹣3,
故E点的坐标为(﹣3,0),
∵以A、C、E、F为顶点的四边形为平行四边形,
∴F点的坐标为(2,﹣3)或(﹣2,﹣3)或(﹣4,3),
代入抛物线的表达式检验,只有(2,﹣3)符合.
∴抛物线上存在点F(2,﹣3),使以点A、C、E、F为顶点的四边形为平行四边形
(3)
解:①如图,当直线MN在x轴上方时,设圆的半径为R(R>0),
则N(R+1,R),代入抛物线的表达式,解得R=
,
其中R=
(不合题意,舍去),
∴R=
.
②如图,当直线MN在x轴下方时,设圆的半径为r(r>0),
则N(r+1,﹣r),
代入抛物线的表达式,解得:r=
,
其中r=
(不合题意,舍去),
∴r=
.
综合①②得:圆的半径为
或
.
![]()
【解析】(1)分别确定A、B、C的坐标,利用待定系数法可得二次函数的表达式;(2)根据A、C、E、F为顶点的四边形为平行四边形,可得点F的可能坐标,再由点F在抛物线上,可最终确定;(3)分两种情况讨论,①MN在x轴上,②MN在x轴下,表示出N的坐标,代入抛物线解析式可得半斤的长度.
【考点精析】解答此题的关键在于理解二次函数的图象的相关知识,掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点,以及对二次函数的性质的理解,了解增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:直线AB经过点A(0,3)点B(
,0),点M在y轴上,⊙M经过点A、B,交x轴于另一点C. 
(1)求直线AB的解析式;
(2)求点M的坐标;
(3)点P是劣弧AC上一个动点,当P点运动时,问:线段PA,PB,PC有什么数量关系?并给出证明. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列各数中,数值相等的有( )
(1)32和23;(2)-23与(-2)3;(3)22与(-2)2;(4)-22与(-2)2;(5)-32与(-3)2;(6)
与
;(7)(-1)11与-1;(8)-(-0.1)3与0.001.A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,将一张长方形的纸片连续对折,对折时每次折痕与上次的折痕保持平行,对折一次得到1条折痕(图中虚线),对折二次得到3条折痕,对折三次得到7条折痕,那么对折2018次后可以得到________条折痕.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,② AQ=BQ,③BP=2PQ, ④AE+BD=AB,其正确的个数有( )个.

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个自然数的立方,可以分裂成若干个连续奇数的和。例如:
和
分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即
=3+5;
=7+9+11;
=13+15+17+19;…;若
也按照此规律来进行“分裂”,则
“分裂”出的奇数中,最大的奇数是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)算一算下面两组算式:(3×5)2与32×52;[(-2)×3]2与(-2)2×32,每组两个算式的结果是否相同?
(2)想一想,(a×b)3等于什么?
(3)猜一猜,当n为正整数时,(a×b)n等于什么?你能利用乘方的意义说明理由吗?
(4)利用上述结论,计算:(-8)2018×(0.125)2019.
相关试题