【题目】如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=( )
![]()
A.70° B.80° C.90° D.100°
参考答案:
【答案】C
【解析】
试题分析:此题的解法灵活,可以首先根据平行线的性质求得∠EFB,再根据三角形的外角性质求得∠E;也可以首先根据平行线的性质求得∠CFB,再根据对顶角相等求得∠AFE,最后再根据三角形的内角和定理即可求解.
解:方法1:
∵AB∥CD,∠C=115°,
∴∠EFB=∠C=115°.
又∠EFB=∠A+∠E,∠A=25°,
∴∠E=∠EFB﹣∠A=115°﹣25°=90°;
方法2:
∵AB∥CD,∠C=115°,
∴∠CFB=180°﹣115°=65°.
∴∠AFE=∠CFB=65°.
在△AEF中,∠E=180°﹣∠A﹣∠AEF=180°﹣25°﹣65°=90°.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】说法中,不正确的是( )
A. 棱柱的侧面可以是三角形;
B. 棱柱的侧面展开图是一个长方形;
C. 若一个棱柱的底面为5边形、则可知该棱柱侧面是由5个长方形组成的;
D. 棱柱的上底面与下底面的形状与大小是完全一样的。
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列四个命题:①坐标平面内的点与有序数对一一对应;②若a大于0,b不大于0,则点P(-a,-b)在第三象限;③在x轴上的点的纵坐标都为0;
④当m=0时,点P(m,-m)在第四象限。其中,是真命题的有( )
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕C顺时针旋转90°至三角板A'B'C'的位置后,再沿CB方向向左平移,使点B'落在原三角板ABC的斜边AB上,则三角板A'B'C'平移的距离为( )

A.6cm B.4cm C.(6﹣
)cm D.(
)cm -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD的对角线AC、BD交于点O,AC⊥AB,AB=
,且AC:BD=2:3.
(1)求AC的长;
(2)求△AOD的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】不等式2x<﹣6的解集为( )
A.x<﹣3 B.x>﹣3 C.x>3 D.x<3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠CAB=70°.在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=( )

A.30° B.35° C.40° D.50°
相关试题