【题目】已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.
![]()
参考答案:
【答案】3
【解析】试题分析:首先通过点A求出两个函数解析式,然后联立方程组,方程组的解就是两线的交点坐标;确定点B坐标后,再求直线与y轴交点G,就可用割补法求△OAB面积.
解:∵一次函数y=kx﹣2的图象过点A(﹣1,﹣1),
∴﹣1=﹣k﹣2,解得k=﹣1,
∴一次函数表达式为y=﹣x﹣2,
∴令x=0,得y=﹣2,
∴G(0,﹣2),
∵函数y=ax2图象过点A(﹣1,﹣1),
∴﹣1=a×(-1)2,解得a =﹣1,
∴二次函数表达式为y=﹣x2,
由一次函数与二次函数联立可得
,
解得
,
,
∴B(2,-4)
∴
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴
为
=–1,P为抛物线上第二象限的一个动点.(1)求抛物线的解析式并写出其顶点坐标;
(2)当点P的纵坐标为2时,求点P的横坐标;
(3)当点P在运动过程中,求四边形PABC面积最大时的值及此时点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】画抛物线y=x2﹣2x﹣3的草图,并说出开口方向,对称轴,顶点坐标,增减性,最值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】乘法公式的探究及应用.

小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);
小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).
小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,设甲、乙、丙、丁分别表示△ABC,△ACD,△EFG,△EGH.已知∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则叙述正确的是( )

A.甲、乙全等,丙、丁全等B.甲、乙全等,丙、丁不全等
C.甲、乙不全等,丙、丁全等D.甲、乙不全等,丙、丁不全等
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在四边形ABCD中,∠BAD=90°,AD=3cm,AB=4 cm,BC=5 cm, CD=6 cm.

(1)连结BD,判断△CBD的形状;
(2)求四边形ABCD的面积S.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在Rt△ABC中,AB的垂直平分线交BC于点E.若BE=2,∠B=22.5°.求∠AEC的度数及AE,AC的长.

相关试题