【题目】我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.通过观察完成下面两个表格中的空格(以下a、b、c为Rt△ABC的三边,且a<b<c):
表一
a | b | c |
3 | 4 | 5 |
5 | 12 | 13 |
7 | 24 | 25 |
9 | 41 |
表二
a | b | c |
6 | 8 | 10 |
8 | 15 | 17 |
10 | 24 | 26 |
12 | 41 |
(1)仔细观察,表一中a为大于1的奇数,此时b、c的数量关系是 ,a、b、c之间的数量关系是 ;
(2)仔细观察,表二中a为大于4的偶数,此时b、c的数量关系是 ,a、b、c之间的数量关系是 ;
(3)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5,12,13”与表二中的“10,24,26”恰好也成倍数关系……请直接利用这一规律计算:在Rt△ABC中,当
,b=
时,斜边c的值.
参考答案:
【答案】(1)b+1=c,a2=b+c;(2)b+2=c,a2=2(b+c);(3)c=1.
【解析】
(1)根据表中的数得出规律即可;
(2)根据表中的数得出规律即可;
(3)根据32+42=52得出答案即可.
(1)当a为大于1的奇数,b、c的数量关系b+1=c,a、b、c之间的数量关系是a2=b+c,
故答案为:b+1=c,a2=b+c;
(2)当a为大于4的偶数,此时b、c的数量关系是b+2=c,a、b、c之间的数量关系是a2=2(b+c),
故答案为:b+2=c,a2=2(b+c);
(3)∵32+42=52,
∴
,
∴c=1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了丰富少年儿童的业余生活,某社区要在如图所示AB所在的直线建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.

(1)求证:AB=AC;
(2)若AB=4,BC=2
,求CD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于E、F,作BH⊥AF于点H,分别交AC、CD于点G、P,连结GE、GF.
(1)求证:△OAE≌△OBG.
(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2
,反比例函数y=
(x>0)的图象经过OA的中点C,交AB于点D. 
(1)求反比例函数的关系式;
(2)连接CD,求四边形CDBO的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】【新知理解】
如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.
线段的中点__________这条线段的“巧点”;(填“是”或“不是”).
若AB = 12cm,点C是线段AB的巧点,则AC=___________cm;
【解决问题】
(3) 如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由


-
科目: 来源: 题型:
查看答案和解析>>【题目】某科技馆对学生参观实行优惠,个人票为每张6元,另有团体票可售,票价45元,每票最多限10人入馆参观.
(1)如果参观的学生人数36人,至少应付多少元?
(2)如果参观的学生人数为48人,至少应付多少元?
(3)如果参观的学生人数为一个两位数
(a表示十位上的数字,b表示个位上的数字),用含a、b的代数式表示至少应付给科技馆的总金额.
相关试题