【题目】如图,已知AB∥CD,EF与AB,CD分别相交于点E,F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,求∠EPF的度数.
![]()
参考答案:
【答案】70°
【解析】试题分析:由EP⊥EF,根据垂直的定义可得∠PEF=90°,根据∠BEF=∠BEP+∠PEF求得∠BEF的度数;又因AB∥CD,根据平行线的性质可得∠BEF+∠EFD=180°,从而求得∠EFD的度数,再由角平分线的定义可得∠EFP的度数,最后根据三角形的内角和定理求得∠EPF的度数.
试题解析:
∵EP⊥EF,∴∠PEF=90°.
∵∠BEP=50°,
∴∠BEF=∠BEP+∠PEF=140°.
∵AB∥CD,∴∠BEF+∠EFD=180°.
∴∠EFD=40°.
∵FP平分∠EFD,∴∠EFP=
∠EFD=20°.
∵∠PEF+∠EFP+∠EPF=180°,
∴∠EPF=70°
-
科目: 来源: 题型:
查看答案和解析>>【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知
,对于任意的x都成立求(1)a0的值
(2)a0﹣a1+a2﹣a3+a4﹣a5的值
(3)a2+a4的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】 “囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.
(1)用含有x、y的代数式表示右图中“囧”的面积;
(2)当
时,求此时“囧”的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一楼房AB后有一假山,其坡度为i=1:
,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线l:y=
x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=
x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:有理数m所表示的点到点2距离3个单位,a、b互为相反数,且都不为零,c、d互为倒数.
(1)求m的值;
(2)求代数式:2(a+b)+(
﹣3cd)﹣m的值.
相关试题