【题目】计算
(1)﹣7﹣5.
(2)(﹣15)﹣(﹣9)
(3)(﹣5)×(﹣7)+20÷(﹣4)
(4)(
)×(﹣36)
(5)﹣81÷
×
÷(﹣16)
(6)5
﹣(﹣2
)+(﹣3
)﹣(+4
)
参考答案:
【答案】(1)﹣12;(2)﹣6;(3)30;(4)﹣1;(5)1;(6)0.
【解析】
(1)根据有理数的减法可以解答本题;
(2)根据有理数的减法可以解答本题;
(3)根据有理数的乘除法和加法可以解答本题;
(4)根据乘法分配律可以解答本题;
(5)根据有理数的乘除法可以解答本题;
(6)根据有理数的加减法可以解答本题.
(1)原式=(﹣7)+(﹣5)=﹣12;
(2)原式=(﹣15)+9=﹣6;
(3)原式=35+(﹣5)=30;
(4)原式=(﹣4)+(﹣6)+9=﹣1;
(5)原式=81
=1;
(6)原式=5
(﹣3
)+(﹣4
)=5
+(﹣4
)=2+(-2)=0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,以△ABC的边AB、AC为边分别向外作等腰直角△ABD和等腰直角△ACE,连接CD、BE、DE

(1)证明:△ADC≌△ABE;
(2)试判断△ABC与△ADE面积之间的关系,并说明理由;
(3)园林小路,曲径通幽,如图2所示,小路由白色的正方形大理石和黑色的三角形大理石铺成,已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地平方米.(不用写过程) -
科目: 来源: 题型:
查看答案和解析>>【题目】今年以来,国务院连续发布了《关于加快构建大众创业万众创新支撑平台的指导意见》等一系列支持性政策,各地政府高度重视、积极响应,中国掀起了大众创业万众创新的新浪潮.某创新公司生产营销A、B两种新产品,根据市场调研,发现如下信息: 信息1:销售A种产品所获利润y(万元)与所售产品x(吨)之间存在二次函数关系y=ax2+bx,当x=1时,y=7;当x=2时,y=12.
信息2:销售B种产品所获利润y(万元)与所售产品x(吨)之间存在正比例函数关系y=2x.
根据以上信息,解答下列问题:
(1)求a,b的值;
(2)该公司准备生产营销A、B两种产品共10吨,请设计一个生产方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在Rt△ABC中,∠ACB=90°,∠B=60°,D为AB的中点,∠EDF=90°,DE交AC于点G,DF经过点C.

(1)求∠ADE的度数;
(2)如图2,将图1中的∠EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∠E1DF1 , ∠E2DF2 , DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求
的值;
(3)若图1中∠B=β(60°<β<90°),(2)中的其余条件不变,判断
的值是否为定值?如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,连接BC.

(1)求A,B,C三点的坐标;
(2)若点P为线段BC上一点(不与B,C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求点P的坐标;
(3)在(2)的条件下,当△BCM的面积最大时,在抛物线的对称轴上存在一点Q,使得△CNQ为直角三角形,求点Q的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,点P(3a,a)是反比例函数y=
(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )
A.y=
B.y=
C.y=
D.y=
-
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0的两根,Rt△ABC的面积为平方厘米.
相关试题