【题目】如图,A(m,0),B(0,n),以B点为直角顶点在第二象限作等腰直角△ABC.
(1)求C点的坐标.
(2)在y轴右侧的平面内是否存在一点P,使△PAB与△ABC全等?若存在,求出P点坐标,若不存在,请说明理由.
![]()
参考答案:
【答案】(1)点C的坐标为(﹣n,n﹣m);(2)存在,P点坐标为(n,n+m)或(m+n,m).
【解析】
(1)过点C作CD⊥y轴于点D,由△ABC为等腰直角三角形即可得出∠ABC=90°、AB=BC,通过角的计算即可得出∠ABO=∠BCD,再结合∠CDB=∠BOA=90°即可利用AAS证出△ABO和△BCD,由此即可得出BD、CD的长度,进而可得出点C的坐标;
(2)△PAB与△ABC全等分两种情况:①当∠ABP=90°时,根据∠ABC=∠ABP=90°、△ABC≌△ABP,即可得出点C、P关于点B对称,结合点B、C的坐标即可得出点P的坐标;②当∠BAP=90°时,由∠ABC=∠BAP=90°即可得出BC∥AP,根据△ABC≌△BAP即可得出BC=AP,进而可找出四边形APBC为平行四边形,结合点A、B、C的坐标即可找出点P的坐标.综上即可得出结论.
解:(1)过点C作CD⊥y轴于点D,如图1所示.
![]()
∵△ABC为等腰直角三角形,
∴∠ABC=90°,AB=BC.
∵CD⊥BD,BO⊥AO,
∴∠CDB=∠BOA=90°.
∵∠CBD+∠ABO=90°,∠CBD+∠BCD=90°,
∴∠ABO=∠BCD.
∴△ABO≌△BCD(AAS),
∴BD=AO,CD=BO,
∵A(m,0),B(0,n),
∴BD=﹣m,CD=n,
∴点C的坐标为(﹣n,n﹣m).
(2)△PAB与△ABC全等分两种情况:
①当∠ABP=90°时,如图2所示.
![]()
∵∠ABC=∠ABP=90°,△ABC≌△ABP,
∴点C、P关于点B对称,
∵C(﹣n,n﹣m),B(0,n),
∴点P的坐标为(n,n+m);
②当∠BAP=90°时,如图3所示.
![]()
∵△ABC≌△BAP,
∴∠ABC=∠BAP=90°,BC=AP,
∴BC∥AP,
∴四边形APBC为平行四边形.
∵A(m,0)、B(0,n),C(﹣n,n﹣m),
∴点P的坐标为(m+n,m).
综上所述:在y轴右侧的平面内存在一点P,使△PAB与△ABC全等,P点坐标为(n,n+m)或(m+n,m).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D是Rt△ABC斜边AB的中点,过点B、C分别作BE∥CD,CE∥BD.
(1)若∠A=60°,AC=
,求CD的长;(2)求证:BC⊥DE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店销售甲、乙两种商品.现有如下信息:

(1)请设计一张表格,并把上述信息中的已知数量填进去;
(2)根据情境中的信息,提出一个问题,并用二元一次方程组解决这个问题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形.
(1)如图1,求证:AD=CE.
(2)如图2,设CE与AD交于点F,连接BF.
①求证:∠CFA=60°.
②求证:CF+BF=AF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过边长为3的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连接PQ交边AC于点D,则DE的长为( )

A.
B.
C.
D.不能确定 -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC于点G,连接FG.
(1)求∠DFG的度数;
(2)设∠BAD=θ,
①当θ为何值时,△DFG为等腰三角形;
②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周长=AB+AC;④BF=CF.其中正确的是______.(填序号)

相关试题