【题目】如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒. ![]()
(1)求AD的长;
(2)当△PDC的面积为15平方厘米时,求t的值;
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得S△PMD=
S△ABC?若存在,请求出t的值;若不存在,请说明理由.
参考答案:
【答案】
(1)解:∵AB=AC=13,AD⊥BC,
∴BD=CD=5cm,且∠ADB=90°,
∴AD2=AC2﹣CD2
∴AD=12cm
(2)解:AP=t,PD=12﹣t,
又∵由△PDM面积为
PD×DC=15,
解得PD=6,∴t=6
(3)解:假设存在t,
使得S△PMD=
S△ABC.
①若点M在线段CD上,
即
时,PD=12﹣t,DM=5﹣2t,
由S△PMD=
S△ABC,
即
,
2t2﹣29t+50=0
解得t1=12.5(舍去),t2=2.
②若点M在射线DB上,即
.
由S△PMD=
S△ABC
得
,
2t2﹣29t+70=0
解得
,
.
综上,存在t的值为2或
或
,使得S△PMD=
S△ABC
【解析】①根据等腰三角形性质和勾股定理解答即可;②根据直角三角形面积求出PD×DC×
=15即可求出t;③根据题意列出PD、MD的表达式解方程组,由于M在D点左右两侧情况不同,所以进行分段讨论即可,注意约束条件.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.试说明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.

(1)求证:AC垂直平分EF;
(2)试判断△PDQ的形状,并加以证明;
(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在
中,
于E,
,D是AE上的一点,且
,连接BD,CD.
试判断BD与AC的位置关系和数量关系,并说明理由;
如图2,若将
绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;
如图3,若将
中的等腰直角三角形都换成等边三角形,其他条件不变.
试猜想BD与AC的数量关系,请直接写出结论;
你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】不等式组
的解集在数轴上表示正确的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,AB是直径,点C是
的中点,点P是
的中点,则∠PAB的度数( ) 
A.30°
B.25°
C.22.5°
D.不能确定 -
科目: 来源: 题型:
查看答案和解析>>【题目】以下四个命题:①全等三角形的面积相等;②最小角等于50°的三角形是锐角三角形;③等腰△ABC中,D是底边BC上一点,E是一腰AC上的一点,若∠BAD=60°且AD=AE,则∠EDC=30°;④将多项式
因式分解,其结果为-y(2x+1)(x-3).其中正确命题的序号为___________.
相关试题