【题目】在对第一章“丰富的图形世界”复习前,老师让学生整理正方体截面的形状并探究多面体(由若干个多边形所围成的几何体)的棱数、面数、顶点数之间的数量关系,如图是小颖用平面截正方体后剩余的多面体,请解答下列问题:
![]()
(1)根据上图完成下表:
多面体 | V(顶点数) | F(面数) | E(棱数) |
(1) |
| 7 | 15 |
(3) | 6 |
| 9 |
(5) | 8 | 6 |
|
(2)猜想:一个多面体的V(顶点数),F(面数),E(棱数)之间的数量关系是 ;
(3)计算:已知一个多面体有20个面、30条棱,那么这个多面体有 个顶点.
参考答案:
【答案】(1)10,5,12;(2)V+F﹣E=2;(3)12
【解析】试题分析:(1)只要将图(2)、(3)、(4)、(5)各个木块的顶点数、棱数、面数数一下就行;数的时候要注意:图中不能直接看到的那一部分不要遗漏,也不要重复,可通过想象计数,正确填入表内;
(2)通过观察找出每个图中“顶点数、棱数、面数”之间隐藏着的数量关系,这个数量关系用公式表示出来即可;
(3)根据(2)中得到的公式进行计算即可.
试题解析:(1)观察图形,多面体(1)的顶点数为10;多面体(3)的面数为5;多面体(5)的棱数为12,
故答案为:10,5,12;
(2)观察表格可以看出:顶点数+面数﹣棱数=2,
即关系式为:V+F﹣E=2,
故答案为:V+F﹣E=2;
(3)由题意得:V+20﹣30=2,解得V=12,
故答案为:12.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,△ABC为等边三角形,P为BC上一点,Q为AC上一点,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则对下面四个结论判断正确的是( )

①点P在∠BAC的平分线上, ②AS=AR, ③QP∥AR, ④△BRP≌△QSP.
A. 全部正确; B. 仅①和②正确; C. 仅②③正确; D. 仅①和③正确
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,点D是AB的中点,E.F在射线AC与射线CB上运动,且满足AE=CF;当点E运动到与点C的距离为1时,则△DEF的面积为___________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC的三个顶点A,B,C的坐标分别为A(4,0),B(0,-3),C(2,-4).

(1)在如图的平面直角坐标系中画出△ABC关于x轴对称的△A'B'C',并分别写出A′,B′,C′的坐标;
(2)将△ABC向左平移5个单位,请画出平移后的△A″B″C″,并写出△A″B″C″各个顶点的坐标;
(3)求出(2)中的△ABC在平移过程中所扫过的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)在如图所示的数轴上,把数﹣2,
,4,﹣
,2.5表示出来,并用“<“将它们连接起来;(2)假如在原点处放立一挡板(厚度不计),有甲、乙两个小球(忽略球的大小,可看作一点),小球甲从表示数﹣2的点处出发,以1个单位长度/秒的速度沿数轴向左运动;同时小球乙从表示数4的点处出发,以2个单位长度/秒的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t(秒).
请从A,B两题中任选一题作答.
A.当t=3时,求甲、乙两小球之间的距离.
B.用含t的代数式表示甲、乙两小球之间的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)点D为AB的中点,DE交AC于点P,DF经过点C.

(1)求∠ADE的度数;
(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断
的值是否随着α的变化而变化?如果不变,请求出
的值;反之,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.

(1)判断∠D是否是直角,并说明理由.
(2)求四边形ABCD的面积.
相关试题