【题目】某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(千米),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图.
![]()
组别 | 单次营运里程“x”(千米) | 频数 |
第一组 | 0<x≤5 | 72 |
第二组 | 5<x≤10 | a |
第三组 | 10<x≤15 | 26 |
第四组 | 15<x≤20 | 24 |
第五组 | 20<x≤25 | 30 |
根据以上信息,解答下列问题:
(1)表中a= ,样本中“单次营运里程”不超过15千米的频率为 ;
(2)请把频数分布直方图补充完整;
(3)估计该公司5000个“单次营运里程”超过20千米的次数.(写出解答过程)
参考答案:
【答案】(1)48,0.73;(2)见解析;(3)750次.
【解析】
(1)①由各组频数之和等于数据总数200可得出a的值;用第一、二、三组的频数和除以200可得;
(2)根据频数分布表中的数据可把频数分布直方图补充完整;
(3)用5000乘以样本中“单次营运里程”超过20公里的次数所占比例即可得.
(1)a=200-(72+26+24+30)=48;
样本中“单次营运里程”不超过15公里的频率为
=0.73.
故答案为48,0.73;
(2)补全图形如下:
![]()
(3)5000×
=750(次).
答:该公司这5000个“单次营运里程”超过20公里的次数约为750次.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一次数学调考中,小明有一道选择题(四选一)不会做,随机选了一个答案,小亮有两道选择题不会做,他也猜了两个答案,他估算了一下,只要猜对一道题,这次测试就可上100分(满分120分);小宁有三道选择题不会做,临交卷时随机填了三个答案;
(1)小明随机选的这个答案,答错的概率是 ;
(2)小亮这次测试不能上100分的概率是 ,要求画出树形图;
(3)小宁三道选择题全错的概率是 ;
(4)这个班数学老师参加集体阅卷,在改卷的过程中,发现一个学生12道选择题一题也没选对,请你根据(1)(2)(3)发现的规律,推出12道选择题全错的概率是 (用幂表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求证:四边形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.

(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( )
A. 52019-1B. 52020-1C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明和小华先后从甲地出发到乙地,小明先乘坐客车出发1小时,小华才开车前住乙地,小华到达乙地后立即按原速从乙地返回甲地。已知小明、小华离甲地距离y(千米)与小明出发时间x(小时)之间的函数关系如图所示,请根据图象解答下列问题:小华从乙地返回后再经过___小时与小明相遇.

相关试题