【题目】如图,把一张直角三角形卡片ABC放在每格宽度为12mm的横格纸中,三个顶点恰好都落在横格线上,已知∠BAC=90°,∠α=36°,求直角三角形卡片ABC的面积(精确到1mm).(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
![]()
参考答案:
【答案】直角三角形卡片ABC的面积约为1200mm2
【解析】试题分析:作BD⊥l于点D,CE⊥l于点E,∵∠α+∠CAE=180°﹣∠BAC=180°﹣90°=90°,∠ACE+∠CAE=90°∴∠ACE=∠α=36°;在Rt△ABD中,可以解得AB的长,在Rt△ACE中,可以解得AC的长,从而可求得三角形ABC的面积.
试题解析:解:作BD⊥l于点D,CE⊥l于点E,如下图所示:
∵∠α+∠CAE=180°﹣∠BAC=180°﹣90°=90°,∠ACE+∠CAE=90°
∴∠ACE=∠α=36°
由已知得BD=24mm,CE=48mm,在Rt△ABD中,sinα=
,∴AB=
≈
=40mm;
在Rt△ACE中,cos∠ACE=
,∴AC=
≈
=60mm
∴
=
ABAC=
×40×60=1200(mm2)
答:直角三角形卡片ABC的面积约为1200mm2.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校准备组织七年级400名学生参加北京夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;
(1)每辆小客车和每辆大客车各能坐多少名学生?
(2)若学校计划租用小客车x辆,大客车y辆,一次送完,且恰好每辆车都坐满;
①请你设计出所有的租车方案;
②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABCD=
AM2.其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】当a、b都是实数,且满足2a﹣b=6,就称点P
为完美点.(1)判断点A(2,3)是否为完美点?
(2)完美点一定不在第 象限;
(3)已知关于m、n的方程组
,当t为何值时,以方程组的解为坐标的点B是完美点,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知反比例函数y=
(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;
(2)若其图象与一次函数y=-x+1的图象的一个交点的纵坐标是3,求m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,将四边形ACBD沿直线EF折叠,使D与C重合,CE与CF分别交AB于点G、H.
(1)求证:△AEG∽△CHG;
(2)△AEG与△BHF是否相似,并说明理由;
(3)若BC=1,求cos∠CHG的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校课外兴趣小组在本校学生中开展“感动中国2014年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别
A
B
C
D
频数
30
40
24
b
频率
a
0.4
0.24
0.06

(1)表中的a=________,b=________;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?
相关试题