【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,将四边形ACBD沿直线EF折叠,使D与C重合,CE与CF分别交AB于点G、H.
(1)求证:△AEG∽△CHG;
(2)△AEG与△BHF是否相似,并说明理由;
(3)若BC=1,求cos∠CHG的值.
![]()
参考答案:
【答案】(1)证明见解析(2)△AEG与△BHF相似 (3)![]()
【解析】试题分析:(1)由于△ABD是等边三角形,那么∠D=∠EAG=60°,根据折叠的性质知:∠D=∠GCH=∠AEG=60°,再加上对顶角∠EGA=∠HGC,即可证得所求的三角形相似;
(2)由△ABD是等边三角形和的性质知:∠BAD=∠GCH=∠ABD,再由三角形内角和定理可证明∠1=∠5,即可得到结论;
(3)在Rt△ABC中,已知了BC的长和∠BAC的度数,即可求得AB、AC的值,由折叠的性质知:DE=CE,可设出DE、CE的长,然后表示出AE的长,进而可在Rt△AEC中,由勾股定理求得AE、CE的值,即可得到∠AEG的余弦值,而根据(1)的相似三角形知∠AEG=∠CHG,由此得解.
试题解析:解:(1)∵△ABD是等边三角形,∴∠EAG=∠D=60°;
根据折叠的性质知:DE=CE,∠D=∠GCH=∠EAG=60°,又∵∠EGA=∠HGC,∴△AEG∽△CHG.
(2)△AEG与△BHF相似.理由如下:
∵∠BAD=∠ABD=∠D,∠GCH=∠D,∴∠BAD=∠GCH=∠ABD,∴∠1+∠2=∠3+∠4.∵∠2=∠3,∠4=∠5,∴∠1=∠5, ∴△AEG∽△BHF;
![]()
(3)△ABC中,∠BAC=30°,BC=1,则AC=
,AB=2,故AD=AB=2.
设DE=EC=x,则AE=2﹣x.
在Rt△AEC中,由勾股定理,得:(2﹣x)2+3=x2,解得x=
,∴AE=
,EC=
,∴cos∠AEC=
=
.由(1)的相似三角形知:∠AEG=∠CHG,故cos∠CHG=cos∠AEC=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】当a、b都是实数,且满足2a﹣b=6,就称点P
为完美点.(1)判断点A(2,3)是否为完美点?
(2)完美点一定不在第 象限;
(3)已知关于m、n的方程组
,当t为何值时,以方程组的解为坐标的点B是完美点,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把一张直角三角形卡片ABC放在每格宽度为12mm的横格纸中,三个顶点恰好都落在横格线上,已知∠BAC=90°,∠α=36°,求直角三角形卡片ABC的面积(精确到1mm).(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知反比例函数y=
(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;
(2)若其图象与一次函数y=-x+1的图象的一个交点的纵坐标是3,求m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校课外兴趣小组在本校学生中开展“感动中国2014年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别
A
B
C
D
频数
30
40
24
b
频率
a
0.4
0.24
0.06

(1)表中的a=________,b=________;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c (a、b、c为常数且a≠0)中的x与y的部分对应值如下表,
x
…
-3
-2
-1
0
1
2
3
4
5
…
y
…
12
5
0
-3
-4
-3
0
5
12
…
下列四个结论:
(1)二次函数y=ax2+bx+c 有最小值,最小值为-3;
(2)抛物线与y轴交点为(0,-3);
(3)二次函数y=ax2+bx+c 的图像对称轴是x=1;
(4)本题条件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正确结论的个数是( )
A. 4 B. 3 C. 2 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF.△ABC旋转后能与△FBE重合,请回答:
(1)旋转中心是点____,
(2)旋转了____度,
(3) AC与EF的关系为_________.

相关试题