【题目】已知:AB、CD为⊙O的直径,弦BE交CD于点F,连接DE交AB于点G,GO=GD.
(1)如图1,求证:DE=DF; ![]()
(2)如图2,作弦AK∥DC,AK交BE于点N,连接CK,求证:四边形KNFC为平行四边形; ![]()
(3)如图3,作弦CH,连接DH,∠CDH=3∠EDH,CH=2
,BE=4
,求DH的长. ![]()
参考答案:
【答案】
(1)证明:如图1中,连接BC.
![]()
∵OB=OC,
∴∠C=∠OBC=∠E,
∵GO=GD,
∴∠D=∠GOD=∠EBC=∠BOC,
∵∠OBC=∠EBC+∠EBA,∠EFD=∠BOC+∠EBA,
∵∠EBC=∠BOC,
∴∠OBC=∠EFD=∠E,
∴DE=DF.
(2)证明:如图2中,连接AD、DK、BC.
![]()
∵AK∥CD,
∴∠AKD=∠KDC,
∴
=
,
∴
=
,
∴∠ADC=∠KCD,
∵∠ADO=∠OBC=∠OCB=∠E=∠EFD,
∴∠KCD=∠EFD,
∴KC∥FN,∵KN∥FC,
∴四边形KNFC是平行四边形.
(3)解:如图3中,作ON⊥BE于N,HK⊥CD于K,连接EO.
![]()
∵ON⊥EB,
∴EN=BN=2
,
∵∠CDH=3∠EDH,
设∠EDH=x,则∠CDH=3x,∠OHD=∠ODH=3x,∠HOC=∠D+∠OHD=6x,∠GOD=∠GDO=∠BOC=4x,∠HOB=∠HOC+∠BOC=10x,∠EOC=∠ODE+∠OED=8x,∠EOB=∠EOC+∠BOC=12x,
∵∠BON=∠EON=6x,
∴∠HOK=∠BON=6x,
在△OHK和△OBN中,
,
∴△OHK≌△OBN,
∴HK=BN=2
,
在Rt△CHK中,CK=
=
=4,
∵CD是直径,
∴∠CHD=∠CKH=90°,
∵∠C=∠C,
∴△CKH∽△CHD,
∴
=
,
∴DH=
=
=
.
【解析】(1)如图1中,连接BC.欲证明DE=DF,只要证明∠E=∠EFD.(2)如图2中,连接AD、DK、BC.首先证明∠ADC=∠KCD,再证明∠EFD=∠ADC,即可推出∠EFD=∠KCD,推出KC∥FN,由此即可解决问题.(3)如图3中,作ON⊥BE于N,HK⊥CD于K,连接EO.想办法证明△OHK≌△OBN,推出HK=BN=2
,再证明△CKH∽△CHD,得
=
,利用勾股定理求出KC即可解决问题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

-
科目: 来源: 题型:
查看答案和解析>>【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.

(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);
(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】六一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.
(1)求A、B两种品牌服装每套进价分别为多少元?
(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣
),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.
(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;
(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=13,BC=10,则sinC= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),若平移该抛物线使其顶点移动到点P1(2,﹣2),那么得到的新抛物线的一般式是 .
相关试题