【题目】某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.
甲种客车 | 乙种客车 | |
载客量(座/辆) | 60 | 45 |
租金(元/辆) | 550 | 450 |
(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;
(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?
参考答案:
【答案】(1)函数表达式是y=100x+3150;(2)当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.
【解析】试题分析:(1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;
(2)根据题意确定出x的取值范围,再根据一次函数的增减性即可得.
试题解析:(1)由题意,得
y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;
(2)由题意,得60x+45(7﹣x)≥380,解得,x≥
.
∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),
即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC,AB=n2﹣1,BC=2n,AC=n2+1(n为大于1的正整数),试问△ABC是直角三角形吗?若是,哪条边所对的角是直角?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:ax2﹣9a= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】若(2x+3)x+2020=1,则x=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若△ABC的三边长a、b、c满足6a+8b+10c﹣50=a2+b2+c2,试判断△ABC的形状.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.
如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.

(1)如图1,如果抛物线y=x 2的过顶抛物线为y=ax2+bx,C(2,0),那么
①a= ,b= .
②如果顺次连接A、B、C、D四点,那么四边形ABCD为( )
A.平行四边形 B.矩形 C.菱形 D.正方形
(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.
(3)如果抛物线
的过顶抛物线是F2,四边形ABCD的面积为
,请直接写出点B的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】某种苔藓的孢蒴的直径约为0.0007毫米,这个数用科学记数法可表示为_______.
相关试题