【题目】近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降,如图,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
![]()
参考答案:
【答案】(1)y=
,此时自变量x的取值范围是x>7.(2)1.5(km/h).(3)矿工至少在爆炸后73.5小时才能下井
【解析】试题分析:(1)根据图象可以得到函数关系式,y=k1x+b(k1≠0),再由图象所经过点的坐标(0,4),(7,46)求出k1与b的值,然后得出函数式y=6x+4,从而求出自变量x的取值范围.再由图象知
(k2≠0)过点(7,46),求出k2的值,再由函数式求出自变量x的取值范围.
(2)结合以上关系式,当y=34时,由y=6x+4得x=5,从而求出撤离的最长时间,再由v=
速度.
(3)由关系式
知,y=4时,x=80.5,矿工至少在爆炸后80.5﹣7=73.5(小时)才能下井.
试题解析:(1)因为爆炸前浓度呈直线型增加,
所以可设y与x的函数关系式为y=k1x+b(k1≠0),
由图象知y=k1x+b过点(0,4)与(7,46),
则
,解得
,
则y=6x+4,此时自变量x的取值范围是0≤x≤7.
(不取x=0不扣分,x=7可放在第二段函数中)
∵爆炸后浓度成反比例下降,
∴可设y与x的函数关系式为
(k2≠0).
由图象知
过点(7,46),
∴
,
∴k2=322,
∴
,此时自变量x的取值范围是x>7.
(2)当y=34时,由y=6x+4得,6x+4=34,x=5.
∴撤离的最长时间为7﹣5=2(小时).
∴撤离的最小速度为3÷2=1.5(km/h).
(3)当y=4时,由
得,x=80.5,
80.5﹣7=73.5(小时).
∴矿工至少在爆炸后73.5小时才能下井.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A. 等弧所对的弦相等 B. 平分弦的直径垂直弦并平分弦所对的弧
C. 若抛物线与坐标轴只有一个交点,则b2﹣4ac=0 D. 相等的圆心角所对的弧相等
-
科目: 来源: 题型:
查看答案和解析>>【题目】反比例函数的图象是_________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若⊙O的半径为4cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系是( )
A. 点A在圆内 B. 点A在圆上 C. 点A在圆外 D. 不能确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】两人各抛一枚硬币,则下面说法正确的是( )
A. 每次抛出后出现正面或反面是一样的
B. 抛掷同样的次数,则出现正、反面的频数一样多
C. 在相同条件下,即使抛掷的次数很多,出现正、反面的频数也不一定相同
D. 当抛掷次数很多时,出现正、反面的次数就相同了
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在关于x的分式方程
①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;
(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;
(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.

(1)求∠D的度数;
(2)若两三角形重叠部分的形状始终是四边形AGDH.
①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;
②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.
相关试题