【题目】在一个不透明的盒子里,装有三个分别标有数字1,2,4的小球,它们的形状、大小、质地等完全相同,小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)写出(x,y)的所有可能出现的结果;
(2)小明、小华各取一次,由取出小球所确定的数字作为点的坐标,这样的点(x,y)中落在反比例函数y=
的图象上的点的概率是多少?
参考答案:
【答案】(1)表格见解析(2)
【解析】试题分析:(1)采用列表法即可写出(x,y)的所有可能出现的结果;
(2)找出表中落在反比例函数y=
的图象上的点的个数再除以总的个数,即可求出答案.
(1)所有可能出现的结果列表如下:
(1,4) | (2,4) | (4,4) |
(1,2) | (2,2) | (4,2) |
(1,1) | (2,1) | (4,1) |
(2)∵落在反比例函数y=
的图象上的点只有(1,4),(2,2),(4,1)三种情况,
一共有9种情况,
∴点(x,y)落在反比例函数y=
的图象上的概率是
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,已知⊙O的半径是4,△ABC内接于⊙O,AC=
.①求∠ABC的度数;
②已知AP是⊙O的切线,且AP=4,连接PC.判断直线PC与⊙O的位置关系,并说明理由;
(2)如图2,已知ABCD的顶点A、B、D在⊙O上,顶点C在⊙O内,延长BC交⊙O于点E,连接DE.求证:DE=DC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.
(1)求正比例函数的解析式;
(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在数轴上点A表示数a,点B表示数b,点C表示数c,a是多项式2x24x+1的一次项系数,b是最小的正整数,单项式
x2y4的次数为c.
(1)a=___,b=___,c=___;
(2)若将数轴在点B处折叠,则点A与点C___重合(填“能”或“不能”);
(3)点A,B,C开始在数轴上运动,若点C以每秒1个单位长度的速度向右运动,同时,点A和点B分别以每秒3个单位长度和2个单位长度的速度向左运功,t分钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=___,BC=___(用含t的代数式表示);
(4)请问:3ABBC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(
≈1.414,精确到1米)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).
(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);
(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?
(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,长方形纸片ABCD中,AB=6 cm,BC=8 cm,点E是BC边上一点,连接AE,并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为____cm.

相关试题