【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.

(1)求证:∠ADB=∠CDB;

(2)若∠ADC=90°,求证:四边形MPND是正方形.


参考答案:

【答案】(1)(2)证明见解析

【解析】试题分析:(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB

2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.

证明:(1对角线BD平分∠ABC

∴∠ABD=∠CBD

△ABD△CBD中,

∴△ABD≌△CBDSAS),

∴∠ADB=∠CDB

2∵PM⊥ADPN⊥CD

∴∠PMD=∠PND=90°

∵∠ADC=90°

四边形MPND是矩形,

∵∠ADB=∠CDB

∴∠ADB=45°

∴PM=MD

四边形MPND是正方形.

关闭