【题目】如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是( )
![]()
A. 2 B. 3 C. 4 D. 5
参考答案:
【答案】C
【解析】
证明△BCO是等腰三角形即可证明①正确;由EG=
AB,EF=
AB可证②成立;由中点的性质可得出EF∥CD,且EF=
CD=BG,结合平行即可证得③结论成立;由三线合一可证明④成立;无法证明⑤成立;此题得解.
∵四边形ABCD是平行四边形,
∴BD=2BO,AD=BC,
∵BD=2AD,
∴BD=2BC,
∴BO=BC,
∵E为OC中点,
∴BE⊥AC,故①成立;
∵BE⊥AC,G是AB中点,
∴EG=
AB,
∵E、F分别是OC、OD的中点,
∴EF∥CD,且EF=
CD,
∵四边形ABCD为平行四边形,
∴AB∥CD,且AB=CD,
∴EF=
AB,
∴EF=EG,故②成立;
∵AB∥CD,EF∥CD,
∴EF∥AB,
∴∠FEG=∠BGE(两直线平行,内错角相等),
在△EFG和△GBE中,
∵BG=FE,∠FEG=∠BGE,GE=EG,
∴△EFG≌△GBE(SAS),即③成立;
∵BG=FE,EF∥AB,
∴四边形BEFG是平行四边形,
∵BE⊥AC,
∴GF⊥AC,
∵EF=EG,
∴∠AEG=∠AEF,
即EA平分∠GEF
故④正确,
若四边形BEFG是菱形
∴BE=BG=
AB,
∴∠BAC=30°
与题意不符合
故⑤错误
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
(1)请画出平移后的△DEF,并求△DEF的面积=
(2)若连接AD、CF,则这两条线段之间的关系是_________________;
(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为( )

A.
B.
C.
D. 2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
于点E,
于点D;点F是AB的中点,连结DF,EF,设
,
,则


A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
(1)求证:CE∥GF;
(2)试判断∠AED与∠D之间的数量关系,并说明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D(﹣1,1)且经过点B,连接AB,直线AB与此抛物线的另一个交点为C,则S△BCD:S△ABO=( )

A.8:1
B.6:1
C.5:1
D.4:1 -
科目: 来源: 题型:
查看答案和解析>>【题目】在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,已知
,
、
分别平分
和
,求证:
.证明:∵AB//CD,(已知)
∴∠ABC=∠______.(两直线平行,内错角相等)
∵__________.(已知)
∴∠EBC=
∠ABC,(角的平分线定义)同理,∠FCB=______.
∵∠EBC=∠FCB.(等量代换)
∴BE//CF.(____________________)

相关试题