【题目】如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为( )
![]()
A.
B.
C.
D. 2
参考答案:
【答案】B
【解析】
记AC与PQ的交点为O,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短;过O作BC的垂线P′O,则PO最短为P′O;
接下来可证明△P′OC和△ABC相似,进而利用相似三角形的性质即可求出PQ的最小值.
解:记AC与PQ的交点为O.
∵∠BAC=90°,AB=3,AC=4,
∴BC=
=5.
∵四边形APCQ是平行四边形,
∴PO=QO,CO=AO,
∴PQ最短也就是PO最短.
过O作BC的垂线OP′.
![]()
∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,
∴△CAB∽△CP′O,
∴
,
∴OP′=
,
∴则PQ的最小值为2OP′=
,
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG//BC,且
于G,下列结论:①
;②
平分
;③
;④
;其中正确的结论是( )
A.只有①③B.只有①③④C.只有②④D.①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(
,﹣2);⑤当x<
时,y随x的增大而减小;⑥a+b+c>0正确的有( )
A.3个
B.4个
C.5个
D.6个 -
科目: 来源: 题型:
查看答案和解析>>【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
(1)请画出平移后的△DEF,并求△DEF的面积=
(2)若连接AD、CF,则这两条线段之间的关系是_________________;
(3)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
中,
于点E,
于点D;点F是AB的中点,连结DF,EF,设
,
,则


A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是( )

A. 2 B. 3 C. 4 D. 5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
(1)求证:CE∥GF;
(2)试判断∠AED与∠D之间的数量关系,并说明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.

相关试题