【题目】我们知道分数
写为小数即
,反之,无限循环小数
写成分数即
.
一般地,任何一个无限循环小数都可以写成分数形式.
例如:把
写成分数形式时,设
=
,则
=0.5555…=0.5+0.05555…=![]()
解一元一次方程
,解得:
,所以
=
.
(1)模仿上述过程,把无限循环小数0.
写成分数形式;
(2)你能把无限循环小数
化成分数形式吗?
参考答案:
【答案】(1)
;(2)![]()
【解析】
根据例题可设x=0.
,则x=0.7777…①,再根据等式性质得:10x=7.777…②,然后利用②-①,再解方程即可.
(2)设x=0.5˙6˙,则x=0.5656…①,根据等式性质得:100x=56.5656…②,再由②-①得方程,再解方程即可.
(1)设x=0.
,则x=0.7777…①,
根据等式性质得:10x=7.777…②,
由②①得:10xx=7.777…0.777…,
即:10xx=7,
解方程得:x=
;
(2)设x=0.
,x=0.5656…①,
根据等式性质得:100x=56.5656…②,
由②①得:100xx=56.5656…0.5656…,
即:100xx=56,
解方程得:x=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果事件A发生的概率是
,那么在相同条件下重复试验,下列4种陈述中,不正确的有 ①说明做100次这种试验,事件A必发生1次
②说明事件A发生的频率是
③说明做100次这种试验中,前99次事件A没发生,后1次事件A才发生
④说明做100次这种试验,事件A可能发生1次( )
A.①、②、③
B.①、②、④
C.②、③、④
D.①、②、③、④ -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:
点A、B在数轴上分别表示两个数a、b,A、B两点间的距离记为|AB|,O表示原点.当A、B两点中有一点在原点时,不妨设点A为原点,如图1,则|AB|=|OB|=|b|=|a-b|;当A、B两点都不在原点时,

①如图2,若点A、B都在原点的右边时,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
②如图3,若点A、B都在原点的左边时,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;
③如图4,若点A、B在原点的两边时,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.
回答下列问题:
(1)综上所述,数轴上A、B两点间的距离为|AB|=______.
(2)若数轴上的点A表示的数为3,点B表示的数为-4,则A、B两点间的距离为______;
(3)若数轴上的点A表示的数为x,点B表示的数为-2,则|AB|=______,若|AB|=3,则x的值为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在桌面上,有7个完全相同的小正方体堆成的一个几何体A,如图所示.
(1) 请画出这个几何体A的三视图.
(2) 若将此几何体的表面喷上红漆(放在桌面上的一面不喷),则三个面上是红色的小正方体有______个.
(3) 若现在你的手头还有一些相同的小正方体可添放在该几何体上,要保持俯视图和左视图不变,则最多可以添加_______个小正方体.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,请你观察下列几种简单多面体模型,解答下列问题:

图1 图2
(探索新知)如图1,(1)根据上面多面体模型,完成表格中的空格;
多面体
顶点数(V)
面数(F)
棱数(E)
四面体
4
4
长方体
8
6
12
正八面体
8
12
正十二面体
20
12
30
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是 .
(2)根据以上关系式猜想是否存在一个多面体,它有16个面,50条棱,34个顶点?并写出理由。
(实际应用)如图2,足球一般有32块黑白皮子缝合而成,黑色的是正五边形,白色的是正六边形,如
果我们近似把足球看成一个多面体.
(1)设黑色的正五边形有x块,则白色的正六边形有(32﹣x)块,当把足球看成一个多面体时,它的棱数是 ,它的顶点数是 .
(2)求出黑皮和白皮各有多少块?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长=_____.

相关试题