【题目】如图,一次函数y1=kx+b的图象与反比例函数y2=
的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0). ![]()
(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2 .
参考答案:
【答案】
(1)解:把 A(2,3)代入y2=
,得m=6.
∴y2=
,
把 A(2,3)、C(8,0)代入y1=kx+b,
得
,
∴这两个函数的解析式为y1=﹣
x+4,y2= ![]()
(2)解:由题意得
,
解得
,
,
当x<0 或 2<x<6 时,y1>y2
【解析】(1)将A、B中的一点代入y2=
,即可求出m的值,从而得到反比例函数解析式,把 A(2,3)、C(8,0)代入y1=kx+b,可得到k、b的值;(2)根据图象可直接得到y1>y2时x的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算与解方程
(1)计算:(π﹣3)0
﹣2sin45°﹣(
)﹣1 .
(2)解方程:x(x﹣6)=﹣9. -
科目: 来源: 题型:
查看答案和解析>>【题目】请根据图示的对话解答下列问题.

求:(1)a,b的值;
(2)8﹣a+b﹣c的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是用长度相等的小棒按一定规律摆成的一组图案.

(1)第1个图案中有______根小棒;第2个图案中有__根小棒;第3个图案中有__根小棒;
(2)第n个图案中有多少根小棒?
(3)第25个图案中有多少根小棒?
(4)是否存在某个符合上述规律的图案,由2032根小棒摆成?如果有,指出是第几个图案;如果没有,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.

(1)求公益广告牌的高度AB;
(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号) -
科目: 来源: 题型:
查看答案和解析>>【题目】目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?
【答案】小红每消耗1千卡能量需要行走30步.
【解析】分析:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数结合小明步行12000步与小红步行9000步消耗的能量相同,即可得出关于x的分式方程,解之后经检验即可得出结论.
详解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,
根据题意,得
,
解得x=30.
经检验:x=30是原方程的解.
答:小红每消耗1千卡能量需要行走30步.点睛:本题考查了分式方程的应用,根据数量关系消耗能量千卡数=行走步数÷每消耗1千卡能量需要行走步数列出关于x的分式方程是解题的关键.
【题型】解答题
【结束】
25【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于F,连接CF.
(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF为正方形,请你添加适当的条件并证明你的结论.

相关试题