【题目】小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为( )
A.
B.
C.
D.![]()
参考答案:
【答案】C.
【解析】
试题分析:分别用A,a,B,b表示妈妈送的两双,用C,c表示姑姑送的一双,用D,d表示同学送的另一双;列表得:
d | Ad | ab | Bd | bc | Cd | cd | Dd | - |
D | AD | aB | BD | bD | CD | cD | - | dD |
c | Ac | ac | Bc | bc | Cc | - | Dc | dc |
C | AC | aC | BC | bC | - | cC | DC | dC |
b | Ab | ab | Bb | - | Cb | cb | Db | db |
B | AB | aB | - | bB | CB | cB | DB | dB |
a | Aa | - | Ba | ba | Ca | ca | Da | da |
A | - | aA | BA | bA | CA | cA | DA | dA |
A | a | B | b | C | c | D | d |
∵共有56种等可能的结果,恰好是同学送的那双的有2种情况,
∴恰好是同学送的那双的概率为:
.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系: ;
(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 度
(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠C,∠P,∠D之间的数量关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.

(1)图2中阴影部分的面积为 ;
(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系: ;
(3)若x+y=-6,xy=2.75,则x-y= ;
(4)实际上有许多恒等式可以用图形的面积来表示,如图3,它表示等式: .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.

(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD平分∠BAC,
(1)图①中,已知AF⊥BC , ∠B=500,∠C=600. 求∠DAF的度数.

(2)图②中,请你在直线AD上任意取一点E(不与点A、D重合),画EF⊥BC,垂足为F.已知∠B=α,∠C=β(β>a).求∠DEF的度数. (用α、β的代数式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)计算:1002-992+982-972+962-952+…+22-1;
(2)计算:
.(3)因式分解:-4a2b+24ab-36b.
相关试题