【题目】如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系: ;
(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 度
(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠C,∠P,∠D之间的数量关系,并证明.
![]()
参考答案:
【答案】(1)∠A+∠D=∠C+∠B;(2)540°;(3)2∠P=∠D+∠B.
【解析】试题分析: (1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;
(2)∠6,∠7的和与∠8,∠9的和相等.由多边形的内角和得出答案即可;
(3)先根据“8字形”中的角的规律,可得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义,得出∠DAP=∠PAB,∠DCP=∠PCB,将①+②,可得2∠P=∠D+∠B,进而求出∠P的度数;
解:(1)如图1,∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,
∴∠A+∠D=∠C+∠B;
故答案为:∠A+∠D=∠C+∠B;
(2)∵∠6,∠7的和与∠8,∠9的和相等,
∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠4+∠5+∠8+∠9=540°.
(3)∠DAP+∠D=∠P+∠DCP,①
∠PCB+∠B=∠PAB+∠P,②
如图3,∵∠DAB和∠BCD的平分线AP和CP相交于点P,
∴∠DAP=∠PAB,∠DCP=∠PCB,
①+②得:
∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,
即2∠P=∠D+∠B,
又∵∠D=40度,∠B=36度,
∴2∠P=40°+36°,
∴∠P=38°;
故答案为38°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完;商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,售价每台也上调了200元.
(1)商场第一次购入的空调每台进价是多少元?
(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C是线段AB上一点,△ACD和△BCE都是等边三角形,连结AE,BD,设AE交CD于点F.
(1)求证:△ACE≌△DCB;
(2)求证:△ADF∽△BAD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:AB∥CD,直线l交AB、CD分别于点E、F,点M在EF上,N是直线CD上的一个动点(点N不与F重合)
(1)当点N在射线FC上运动时,∠FMN+∠FNM=∠AEF,说明理由;
(2)当点N在射线FD上运动时,∠FMN+∠FNM与∠AEF有什么关系并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成4个小长方形,然后按图2的形状拼成一个正方形.

(1)图2中阴影部分的面积为 ;
(2)观察图2,请你写出式子(m+n)2,(m-n)2,mn之间的等量关系: ;
(3)若x+y=-6,xy=2.75,则x-y= ;
(4)实际上有许多恒等式可以用图形的面积来表示,如图3,它表示等式: .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.

(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为( )
A.
B.
C.
D.
相关试题