【题目】在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数
(k>0)的图象过点E与直线l1相交于点F. ![]()
(1)若点E与点P重合,求k的值;
(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;
(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)解:若点E与点P重合,则k=1×2=2
(2)解:当k>2时,如图1,
点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD为矩形,
∵PF⊥PE,
∴S△FPE=
PEPF=
(
﹣1)(k﹣2)=
k2﹣k+1,
∴四边形PFGE是矩形,
∴S△PFE=S△GEF,
∴S△OEF=S矩形OCGD﹣S△DOF﹣S△EGF﹣S△OCE=
k﹣
﹣(
k2﹣k+1)﹣
=
k2﹣1,
∵S△OEF=2S△PEF,
∴
k2﹣1=2(
k2﹣k+1),
解得k=6或k=2,
∵k=2时,E、F重合,
∴k=6,
∴E点坐标为:(3,2)
![]()
(3)解:存在点E及y轴上的点M,使得△MEF≌△PEF,
①当k<2时,如图2,只可能是△MEF≌△PEF,作FH⊥y轴于H,
∵∠MHF=∠EBM=90°,∠HMF=∠MEB,
∴△FHM∽△MBE,
∴
=
,
∵FH=1,EM=PE=1﹣
,FM=PF=2﹣k,
∴
=
,BM=
,
在Rt△MBE中,由勾股定理得,EM2=EB2+MB2,
∴(1﹣
)2=(
)2+(
)2,
解得k=
,此时E点坐标为(
,2),
①当k>2时,如图3,
只可能是△MFE≌△PEF,作FQ⊥y轴于Q,△FQM∽△MBE得,
=
,
∵FQ=1,EM=PF=k﹣2,FM=PE=
﹣1,
∴
=
,BM=2,
在Rt△MBE中,由勾股定理得,EM2=EB2+MB2,
∴(k﹣2)2=(
)2+22,解得k=
或0,但k=0不符合题意,
∴k=
.
此时E点坐标为(
,2),
∴符合条件的E点坐标为(
,2)(
,2).
![]()
![]()
【解析】(1)根据反比例函数中k=xy进行解答即可;(2)当k>2时,点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD为矩形,再求出S△FPE=
k2﹣k+1,根据S△OEF=S矩形OCGD﹣S△DOF﹣S△EGF﹣S△OCE即可求出k的值,进而求出E点坐标;(3)①当k<2时,只可能是△MEF≌△PEF,作FH⊥y轴于H,由△FHM∽△MBE可求出BM的值,再在Rt△MBE中,由勾股定理得,EM2=EB2+MB2 , 求出k的值,进而可得出E点坐标; ②当k>2时,只可能是△MFE≌△PEF,作FQ⊥y轴于Q,△FQM∽△MBE得,
=
,可求出BM的值,再在Rt△MBE中,由勾股定理得,EM2=EB2+MB2 , 求出k的值,进而可得出E点坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.


(1)图形①中∠B=°,图形②中∠E=°;
(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”. ①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,需要这种纸片张; -
科目: 来源: 题型:
查看答案和解析>>【题目】某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,且乙级干果的前三天的销售量的情况见下表:
t
1
2
3
y2
21
44
69
(1)求a、b的值;
(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?
(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克? (说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计) -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,一次函数
的图象是直线l1 , l1与x轴、y轴分别相交于A、B两点.直线l2过点C(a,0)且与直线l1垂直,其中a>0.点P、Q同时从A点出发,其中点P沿射线AB运动,速度为每秒4个单位;点Q沿射线AO运动,速度为每秒5个单位. 
(1)写出A点的坐标和AB的长;
(2)当点P、Q运动了多少秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2、y轴都相切,求此时a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为( )

A.30,2
B.60,2
C.60,
D.60,
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知函数y=
与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+
=0的解为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为 .

相关试题