【题目】如图已知:E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:
![]()
(1)∠ECD=∠EDC;
(2)OE是CD的垂直平分线.
参考答案:
【答案】见解析
【解析】
试题分析:(1)根据角平分线上的点到角的两边距离相等可得EC=DE,再根据等边对等角证明即可;
(2)利用“HL”证明Rt△OCE和Rt△ODE全等,根据全等三角形对应边相等可得OC=OD,然后根据等腰三角形三线合一证明.
证明:(1)∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,
∴EC=DE,
∴∠ECD=∠EDC;
(2)在Rt△OCE和Rt△ODE中,
,
∴Rt△OCE≌Rt△ODE(HL),
∵OE是∠AOB的平分线,
∴OE是CD的垂直平分线.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数
的图象于B点,交函数
的图象于C,过C作y轴和平行线交BO的延长线于D.(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(1)条件下,四边形AODC的面积为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠B=80°,∠C=40°,
(1)尺规作图:作AC的垂直平分线,交AC于点D,交BC于点E;
(2)连接AE,求证:AB=AE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.
(1)求证:AE=2CE;
(2)连接CD,请判断△BCD的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰△ABC中,AB=AC=3,∠B=30°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=30°,DE交线段AC于点E.

(1)D点运动到图1位置时,∠BDA=75°,则∠EDC=______,∠DEC=________;
(2)D点运动到图2位置时,当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状也在变化,判断当△ADE是等腰三角形时,∠BDA等于多少度(请直接写出结果).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
相关试题