【题目】如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离 cm.
![]()
参考答案:
【答案】2![]()
【解析】
试题分析:因为OE=OF=EF=10(cm),
所以底面周长=10π(cm),
将圆锥侧面沿OF剪开展平得一扇形,此扇形的半径OE=10(cm),弧长等于圆锥底面圆的周长10π(cm)
设扇形圆心角度数为n,则根据弧长公式得:
10π=
,
所以n=180°,
即展开图是一个半圆,
因为E点是展开图弧的中点,
所以∠EOF=90°,
连接EA,则EA就是蚂蚁爬行的最短距离,
在Rt△AOE中由勾股定理得,
EA2=OE2+OA2=100+64=164,
所以EA=2
(cm),
即蚂蚁爬行的最短距离是2
(cm).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】一元二次方程x2=3x的解是: .
-
科目: 来源: 题型:
查看答案和解析>>【题目】3,5,8,9,7,6,2的中位数是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分11分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).
(1)如图①,∠B=∠C,BD=CE,AB=DC.
①求证:△ADE为等腰三角形.
②若∠B=60°,求证:△ADE为等边三角形.
(2)如图②,射线AM与BN,AM⊥AB,BN⊥AB,点P是AB上一点,在射线AM与BN上分别作点C、点D满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知ab<0,且|a|<|b|,化简|a+b|+|a﹣b|+|b﹣a|=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;
(2)求图中阴影部分的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若a是有理数,则计算正确的是( )
A. (﹣a)+(﹣a)=2a B. ﹣a+(﹣a)=0
C. (﹣a)﹣(﹣a)=2a D. ﹣a﹣(+a)=﹣2a
相关试题