【题目】如图,四边形ABCD是⊙O的内接四边形,点F 是CD延长线上的一点,且AD平分∠BDF,AE⊥CD于点E.
![]()
⑴ 求证:AB=AC.
⑵ 若BD=11,DE=2,求CD的长.
参考答案:
【答案】⑴ 证明见解析⑵ 7
【解析】试题分析:(1)同弧所对圆周角相等∠BCA=∠ADB,四边形的外接圆性质,可以得∠ADF=∠ABC,利用AD平分∠BDF,可以得到AB=AC.
(2)试题解析:过A作BD的垂线于G,构造两个全等三角形
, ![]()
GD=ED,BG=CE ,可得CD长.
试题解析:
⑴ ∵ AD平分∠BDF ,
∴ ∠ADF=∠ADB,
∵ ∠ABC+∠ADC=180°,∠ADC+∠ADF=180°,
∴ ∠ADF=∠ABC,
∵ ∠ACB=∠ADB,
∴ ∠ABC=∠ACB,
∴ AB=AC .
⑵ 过点A作AG⊥BD,垂足为点G.
∵ AD平分∠BDF,AE⊥CF,AG⊥BD.
∴ AG=AE,∠AGB=∠AEC=90°,
在Rt△AED和Rt△AGD中,
,
∴ Rt△AED≌Rt△AGD(HL),
∴ GD=ED=2,
在Rt△AEC和Rt△AGB中,
,
∴ Rt△AEC≌Rt△AGB(HL),
∴ BG=CE ,
∵ BD=11,
∴ BG=BD-GD=11-2=9 .
∴ CE=BG=9.
∴ CD=CD-DE=9-2=7.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ABC=90°,以AB为直径的⊙O交AB于点D,点E为BC的中点,连接OD、DE.
⑴ 求证:OD⊥DE.
⑵ 若∠BAC=30°,AB=8,求阴影部分的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AGF=∠ABC,∠1+∠2=180°.
(1)试判断BF与DE的位置关系,并说明理由;
(2)若BF⊥AC,∠2=150°,求∠AFG的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:

(1)农民自带的零钱是多少?
(2)降价前每千克西瓜出售的价格是多少?
(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?
(4)请问这个水果贩子一共赚了多少钱?
-
科目: 来源: 题型:
查看答案和解析>>【题目】仔细阅读材料,再尝试解决问题:
完全平方式
以及
的值为非负数的特点在数学学习中有广泛的应用,比如探求
的最大(小)值时,我们可以这样处理:例如:①用配方法解题如下:

原式=
+6x+9+1=
因为无论
取什么数,都有
的值为非负数,所以
的最小值为0;此时
时,进而
的最小值是0+1=1;所以当
时,原多项式的最小值是1.请根据上面的解题思路,探求:
(1)若(x+1)2+(y-2)2=0,则x= ,y= ..
(2)若x2+y2+6x-4y+13=0,求x,y的值;
(3)求
的最小值 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一条直线过点(0,4),且与抛物线y=
x2交于A,B两点,其中点A的横坐标是-2.(1)求这条直线的解析式及点B的坐标;
(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?

相关试题