【题目】(1)(发现)如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.![]()
①若AB=6,AE=4,BD=2,则CF =________;
②求证:△EBD∽△DCF.
(2)(思考)若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出
的值;若不存在,请说明理由.
(3)(探索)如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为________(用含α的表达式表示)
.![]()
参考答案:
【答案】(1)①4;②证明见解析;(2)存在;(3)1-cosα.
【解析】(1)①先求出BE的长度后发现BE=BD,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠EDF=60°,可证得△CDF是等边三角形,从而CF=CD=BC-BD;
②证明△EBD∽△DCF,这个模型可称为“一线三等角相似模型”,根据“AA”判定相似;
(2)【思考】由平分线可联系到角平分线的性质“角平分线上的点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而通过证明△BDM△CDN可得BD=CD;
(3)【探索】由已知不难求得C△ABC=AB+BC+CA=2AB+2OB=2(m+mcosα),则需要用m和α的三角函数表示出C△AEF,C△AEF=AE+EF+AF;题中直接已知O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF= AG+AH=2AG,而AG=AB-OB,从而可求得.
(1)①∵△ABC是等边三角形,
∴AB=BC=AC=6,∠B=∠C=60°,
∵AE=4,
∴BE=2,则BE=BD,
∴△BDE是等边三角形,
∴∠BDE=60°,
又∵∠EDF=60°,
∴∠CDF=180°-∠EDF-∠B=60°,则∠CDF =∠C=60°,
∴△CDF是等边三角形,
∴CF=CD=BC-BD=6-2=4;
②证明:∵∠EDF=60°,∠B=60°
∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,
∴∠BED=∠CDF,
又∵∠B=∠C,
∴△EBD∽△DCF
(2)存在.如图,作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别为M,G,N,
![]()
∵ED平分∠BEF且FD平分∠CFE,
∴DM=DG=DN,
又∵∠B=∠C=60°,∠BMD=∠CND=90°,
∴△BDM△CDN,
∴BD=CD,
即点D是BC的中点,
∴
;
( 3 )连结AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别为G,D,H,
![]()
则∠BGO=∠CHO=90°,
∵AB=AC,O是BC的中点
∴∠B=∠C,OB=OC,
∴△OBG△OCH,
∴OG=OH,GB=CH,∠BOG=∠COH=90°α,
则∠GOH=180°-(∠BOG+∠COH)=2α,
∵∠EOF=∠B=α,
则∠GOH=2∠EOF=2α,
由(2)题可猜想应用EF=ED+DF=EG+FH,
则 C△AEF=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,
设AB=m,则OB=mcosα,GB=mcos2α,
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在以线段AB为直径的⊙O上取一点,连接AC、BC.将△ABC沿AB翻折后得到△ABD.

(1)试说明点D在⊙O上;
(2)在线段AD的延长线上取一点E,使AB2=AC·AE.求证:BE为⊙O的切线;
(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为节约能源,优化电力资源配置,提高电力供应的整体效益,国家实行了错峰用电.某地区的居民用电,按白天时段和晚间时段规定了不同的单价.某户5月份白天时段用电量比晚间时段用电量多
,6月份白天时段用电量比5月份白天时段用电量少
,结果6月份的总用电量比5月份的总用电量多
,但6月份的电费却比5月份的电费少
,则该地区晚间时段居民用电的单价比白天时段的单价低的百分数为( )A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面是某同学对多项式(x2-2x)(x2-2x+2)+1进行因式分解的过程:
解:设x2-2x=y
原式=y (y+2)+1 (第一步)
=y2+2y+1 (第二步)
=(y+1)2 (第三步)
=(x2-2x+1)2 (第四步)
请问:
(1)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”),若不彻底,则该因式分解的最终结果为 ;
(2)请你模仿上述方法,对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“五一”期间,部分同学随家长一同到某公园游玩,下面是购买门票时,甲同学与其爸爸的对话(如图),试根据图中的信息,解决下列问题:
(1)本次共去了几个成人,几个学生?
(2)甲同学所说的另一种购票方式,是否可以省钱?试说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线AB∥CD,点P为直线l上一点,尝试探究并解答:
(1)如图1,若点P在两平行线之间,∠1=23°,∠2=35°,则∠3= ;
(2)探究图1中∠1,∠2与∠3之间的数量关系,并说明理由;
(3)如图2,若点P在CD的上方,探究∠1,∠2与∠3之间有怎样的数量关系,并说明理由;
(4)如图3,若∠PCD与∠PAB的平分线交于点P1,∠DCP1与∠BAP1的平分线交于点P2,∠DCP2与∠BAP2的平分线交于点P3,…,∠DCPn-1与∠BAPn-1的平分线交于点Pn,若∠PCD=α,∠PAB=β,直接写出∠APnC的度数(用含α与β的代数式表示).



-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC上一点,将△BCD,△ADE分别沿CD,DE折叠,点A、B恰好重合于点A'处.若∠A'CA=18°,则∠A=____°.

相关试题