【题目】如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的⊙P周长为1.点M从A开始沿⊙P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0<m<1).
(1)当m=
时,n=_____;
(2)随着点M的转动,当m从
变化到
时,点N相应移动的路径长为_____.
![]()
参考答案:
【答案】 -1 ![]()
【解析】试题解析:(1)当m=
时,连接PM,如图1,
![]()
则有∠APM=
×360°=90°.
∵PA=PM,∴∠PAM=∠PMA=45°.
∴NO=AO=1,
∴n=-1.
(2)①当m=
时,连接PM,如图2,
![]()
∠APM=
×360°=120°.
∵PA=PM,∴∠PAM=∠PMA=30°.
在Rt△AON中,NO=AOtan∠OAN=1×
=
;
②当m=
时,连接PM,如图3,
![]()
∠APM=360°-
×360°=120°,
同理可得:NO=
.
综合①、②可得:点N相应移动的路经长为
+
=
.
故答案为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′=
,在m′的所有可能的情况中,当|b+2c﹣a﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.(1)最大的四位“半期数”为 ;“半期数”3247的“伴随数”是 .
(2)已知四位数P=
是“半期数”,三位数Q=
,且441Q﹣4P=88991,求F(P')的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:

(1)这次活动一共调查了______名学生;
(2)补全条形统计图;
(3)选择篮球项目的人数在扇形统计图中,所占的百分比为______;
(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于
BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.则下列结论错误的是( )
A. AD平分∠MAN B. AD垂直平分BC
C. ∠MBD=∠NCD D. 四边形ACDB一定是菱形
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线AB:y=﹣
x+
与直线AC:y=
+8交于点A,直线AB分别交x轴、y轴于B、E,直线AC分别交x轴、y轴于点C、D.(1)求点A的坐标;
(2)在y轴左侧作直线FG∥y轴,分别交直线AB、直线AC于点F、G,当FG=3DE时,过点G作直线GH⊥y轴于点H,在直线GH上找一点P,使|PF﹣PO|的值最大,求出P点的坐标及|PF﹣PO|的最大值;
(3)将一个45°角的顶点Q放在x轴上,使其角的一边经过A点,另一边交直线AC于点R,当△AQR为等腰直角三角形时,请直接写出点R的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,P为边长为2的正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①AP=EF;②AP⊥EF;③EF最短长度为
;④若∠BAP=30°时,则EF的长度为2.其中结论正确的有( )
A. ①②③B. ①②④C. ②③④D. ①③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为_______.

相关试题