【题目】在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩(m) | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 |
人数 | 1 | 2 | 4 | 3 | 3 | 2 |
这些运动员跳高成绩的中位数和众数分别是( )
A.1.70,1.65
B.1.70,1.70
C.1.65,1.70
D.3,4
参考答案:
【答案】A
【解析】解:在这一组数据中1.65是出现次数最多的,
故众数是1.65;
在这15个数中,处于中间位置的第8个数是1.70,所以中位数是1.70.
所以这些运动员跳高成绩的中位数和众数分别是1.70,1.65.
故选A.
根据中位数和众数的定义,第8个数就是中位数,出现次数最多的数为众数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,OB、OC是∠ABC、∠ACB的角平分线;
(1)填写下面的表格.
∠A的度数
50°
60°
70°
∠BOC的度数
(2)试猜想∠A与∠BOC之间存在一个怎样的数量关系,并证明你的猜想;
(3)如图2,△ABC的高BE、CD交于O点,试说明图中∠A与∠BOD的关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若a>b,则下列结论错误的是( )
A.a﹣3>b﹣3B.3﹣a>3﹣bC.a+3>b+3D.﹣3a<﹣3b
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,已知直线AB的函数解析式为y=﹣2x+8,与x轴交于点A,与y轴交于点B.
(1)求A、B两点的坐标;
(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),作PE⊥x轴于点E,PF⊥y轴于点F,连接EF,问:
①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;
②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:m3﹣4m2+4m= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,把点P(-2,3)向右平移3个单位长度的对应点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(
取1.73,结果精确到0.1千米)
相关试题