【题目】先阅读下列材料:
我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.
(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.
如:ax+by+bx+ay=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b)(x+y)
2xy+y2﹣1+x2
=x2+2xy+y2﹣1
=(x+y)2﹣1
=(x+y+1)(x+y﹣1)
(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:
x2+2x﹣3
=x2+2x+1﹣4
=(x+1)2﹣22
=(x+1+2)(x+1﹣2)
=(x+3)(x﹣1)
请你仿照以上方法,探索并解决下列问题:
(1)分解因式: ![]()
(2)分解因式:x2﹣6x﹣7;
(3)分解因式: ![]()
参考答案:
【答案】(1)
;(2)
;(3)
.
【解析】试题分析:(1)仿照例(1)将前两项和后两项分别分作一组,然后前两项利用平方差公式分解,然后提出公因式(a-b)即可;
(2)仿照例(2)将-7拆成9-16,然后前三项利用完全平方公式分解后,再用平方差公式分解即可;
(3)仿照例(2)将-5b2拆成4b2-9b2,然后前三项利用完全平方公式分解后,再用平方差公式分解即可.
试题解析:
解:(1)
=
=
;
(2)原式=![]()
=
=
=
;
(3)原式=![]()
=
=
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD的外侧,作等边
ADE,则
BED的度数是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线AB和CD相交于点O,在∠COB的内部作射线OE.
(1)若∠AOC=36°,∠COE=90°,求∠BOE的度数;
(2)若∠COE:∠EOB:∠BOD=4:3:2,求∠AOE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为 m.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公交公司有A,B型两种客车,它们的载客量和租金如下表:
A
B
载客量(人/辆)
45
30
租金(元/辆)
400
280
红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:
(1)用含x的式子填写下表:
车辆数(辆)
载客量(人)
租金(元)
A
x
45x
400x
B
5-x
(2)若要保证租车费用不超过1900元,求x的最大值;
(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O[Math Processing Error]
C[Math Processing Error]
B[Math Processing Error]
A运动,点P的运动时间为t秒.(1)当t=5时, P点坐标为____________;
(2)当t>4时,OP+PD有最小值吗?如果有,请算出该最小值,如果没有,请说明理由;
(3)当t为何值时,△ODP是腰长为5的等腰三角形?(直接写出t的值).


相关试题