【题目】某旅游风景区出售一种纪念品,该纪念品的成本为12元/个,这种纪念品的销售价格为x(元/个)与每天的销售数量y(个)之间的函数关系如图所示. ![]()
(1)求y与x之间的函数关系式;
(2)销售价格定为多少时,每天可以获得最大利润?并求出最大利润.
(3)“十一”期间,游客数量大幅增加,若按八折促销该纪念品,预计每天的销售数量可增加200%,为获得最大利润,“十一”假期该纪念品打八折后售价为多少?
参考答案:
【答案】
(1)解:设y=kx+b,
根据函数图象可得:
,
解得:
,
∴y=﹣5x+200
(2)解:设每天获利w元,
则w=(x﹣12)y=﹣5x2+260x﹣2400=﹣5(x﹣26)2+980,
∴当x=26时,w最大,最大利润为980元
(3)解:设“十一”假期每天利润为P元,
则P=(0.8x﹣12)y(1+200%)=﹣12x2+660x﹣7200=﹣12(x﹣
)2+1875,
∴当x=
时,P最大,
此时售价为0.8×
=22,
答:“十一”假期该纪念品打八折后售价为22元
【解析】(1)根据函数图象中两个点的坐标,利用待定系数法求解可得;(2)根据“总利润=单件利润×销售量”列出函数解析,利用二次函数的性质可得最值情况;(3)根据(2)中相等关系列出函数解析式,由二次函数的性质求解可得.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=
(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.

(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是 .
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.

(1)①填空:△ACE∽∽;
(2)求证:△CDE∽△CBA;
(3)求证:△FBD≌△EDC;
(4)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是( )
A.正比例函数
B.一次函数
C.反比例函数
D.二次函数
相关试题