【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a,b满足(a﹣3)2+|b﹣6|=0,现同时将点A,B分别向下平移3个单位,再向左平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
![]()
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=
S四边形ABCD?若存在这样一点,求出点M的坐标,若不存在,试说明理由;
(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP,∠DOP,∠APO之间满足的数量关系.
参考答案:
【答案】(1)18;(2)M(0,2)或(0,﹣2);(3)①当点P在线段BD上移动时,∠APO=∠DOP+∠BAP;②当点P在DB的延长线上时,∠DOP=∠BAP+∠APO;③当点P在BD的延长线上时,∠BAP=∠DOP+∠APO.
【解析】
(1)根据非负数的性质分别求出a、b,根据平移规律得到点C,D的坐标,根据坐标与图形的性质求出S四边形ABCD;
(2)设M坐标为(0,m),根据三角形的面积公式列出方程,解方程求出m,得到点M的坐标;
(3)分点P在线段BD上、点P在DB的延长线上、点P在BD的延长线上三种情况,根据平行线的性质解答.
解:(1)∵(a﹣3)2+|b﹣6|=0,
∴a﹣3=0,b﹣6=0,
,解得,a=3,b=6.
∴A(0,3),B(6,3),
∵将点A,B分别向下平移3个单位,再向左平移2个单位,分别得到点A,B的对应点C,D,
∴C(﹣2,0),D(4,0),
∴S四边形ABDC=AB×OA=6×3=18;
(2)在y轴上存在一点M,使S△MCD=S四边形ABCD,
设M坐标为(0,m).
∵S△MCD=
S四边形ABDC,
∴
×6|m|=
×18,
解得m=±2,
∴M(0,2)或(0,﹣2);
(3)①当点P在线段BD上移动时,∠APO=∠DOP+∠BAP,
理由如下:如图1,过点P作PE∥AB,
∵CD由AB平移得到,则CD∥AB,
∴PE∥CD,
∴∠BAP=∠APE,∠DOP=∠OPE,
∴∠BAP+∠DOP=∠APE+∠OPE=∠APO;
②当点P在DB的延长线上时,同①的方法得,
∠DOP=∠BAP+∠APO;
③当点P在BD的延长线上时,同①的方法得,
∠BAP=∠DOP+∠APO.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店需要购进甲、乙两种商品共180件其进价和售价如表:(注:获利=售价进价)
(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.

-
科目: 来源: 题型:
查看答案和解析>>【题目】求不等式(2x﹣1)(x+3)>0的解集.
解:根据“同号两数相乘,积为正”可得:①
或 ②
.解①得x>
;解②得x<﹣3.∴不等式的解集为x>
或x<﹣3.请你仿照上述方法解决下列问题:
(1)求不等式(2x﹣3)(x+1)<0的解集.
(2)求不等式
≥0的解集. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线
经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;
(2)如果垂直于y轴的直线l与抛物线交于两点A(
,
),B(
,
),其中
,
,与y轴交于点C,求BC
AC的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x轴上,原抛物线上一点P平移后对应点为点Q,如果OP=OQ,直接写出点Q的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于( )

A.2:5 B.14:25 C.16:25 D.4:21
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.
(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;
(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:如果⊙C的半径为r,⊙C外一点P到⊙C的切线长小于或等于2r,那么点P叫做⊙C的“离心点”.
(1)当⊙O的半径为1时,
①在点P1(
,
),P2(0,-2),P3(
,0)中,⊙O的“离心点”是 ;②点P(m,n)在直线
上,且点P是⊙O的“离心点”,求点P横坐标m的取值范围;(2)⊙C的圆心C在y轴上,半径为2,直线
与x轴、y轴分别交于点A,B. 如果线段AB上的所有点都是⊙C的“离心点”,请直接写出圆心C纵坐标的取值范围.
相关试题