【题目】如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2
,则∠A=( ) ![]()
A.120°
B.100°
C.60°
D.30°
参考答案:
【答案】A
【解析】解:连接AC, ![]()
∵四边形ABCD是菱形,
∴AC⊥BD,
∵A沿EF折叠与O重合,
∴EF⊥AC,EF平分AO,
∵AC⊥BD,
∴EF∥BD,
∴E、F分别为AB、AD的中点,
∴EF为△ABD的中位线,
∴EF=BD,
∴BD=2EF=4
,
∴BO=2
,
∴AO=
=2,
∴AO=
AB,
∴∠ABO=30°,
∴∠BAO=60°,
∴∠BAD=120°.
故选A.
【考点精析】利用菱形的性质和翻折变换(折叠问题)对题目进行判断即可得到答案,需要熟知菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,D为
的中点,连接OD交弦AC于点F,过点D作DE∥AC,交BA的延长线于点E. 
(1)求证:DE是⊙O的切线;
(2)连接CD,若OA=AE=4,求四边形ACDE的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,ABCD中,若AB=1,BC=2,则ABCD为1阶准菱形.

(1)猜想与计算:
邻边长分别为3和5的平行四边形是阶准菱形;已知ABCD的邻边长分别为a,b(a>b),满足a=8b+r,b=5r,请写出ABCD是阶准菱形.
(2)操作与推理:
小明为了剪去一个菱形,进行了如下操作:如图2,把ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+2过点A(﹣2,0),B(2,2),与y轴交于点C.

(1)求抛物线y=ax2+bx+2的函数表达式;
(2)若点D在抛物线y=ax2+bx+2的对称轴上,求△ACD的周长的最小值;
(3)在抛物线y=ax2+bx+2的对称轴上是否存在点P,使△ACP是直角三角形?若存在直接写出点P的坐标,若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】(
﹣
)÷
,其中a=2017°+(﹣
)﹣1+
tan30°. -
科目: 来源: 题型:
查看答案和解析>>【题目】2017赤峰)已知平行四边形ABCD.

(1)尺规作图:作∠BAD的平分线交直线BC于点E,交DC延长线于点F(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证:CE=CF. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了增强中学生的体质,某校食堂每天都为学生提供一定数量的水果,学校李老师为了了解学生喜欢吃哪种水果,进行了抽样调查,调查分为五种类型:A喜欢吃苹果的学生;B喜欢吃桔子的学生;C.喜欢吃梨的学生;D.喜欢吃香蕉的学生;E喜欢吃西瓜的学生,并将调查结果绘制成图1和图2 的统计图(不完整).请根据图中提供的数据解答下列问题:

(1)求此次抽查的学生人数;
(2)将图2补充完整,并求图1中的x;
(3)现有5名学生,其中A类型3名,B类型2名,从中任选2名学生参加体能测试,求这两名学生为同一类型的概率(用列表法或树状图法)
相关试题