【题目】如图,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2.二次函数y=x2+mx+2的图象经过点A,B,顶点为D.![]()
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1 , 顶点为D1 . 点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.
参考答案:
【答案】
(1)解:由题意,点B的坐标为(0,2),
∴OB=2,
∵tan∠OAB=2,即
=2.
∴OA=1.
∴点A的坐标为(1,0).
又∵二次函数y=x2+mx+2的图象过点A,
∴0=12+m+2.
解得m=﹣3,
∴所求二次函数的解析式为y=x2﹣3x+2
(2)解:作CE⊥x轴于E,
![]()
由于∠BAC=90°,可知∠CAE=∠OBA,△CAE≌△OBA,
可得CE=OA=1,AE=OB=2,可得点C的坐标为(3,1).
由于沿y轴运动,故图象开口大小、对称轴均不变,
设出解析式为y=x2﹣3x+c,代入C点作标得1=9﹣9+c,c=1,
所求二次函数解析式为y=x2﹣3x+1.
(3)解:由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象,
![]()
![]()
那么对称轴直线x=
不变,且BB1=DD1=1.
∵点P在平移后所得二次函数图象上,
设点P的坐标为(x,x2﹣3x+1).
在△PBB1和△PDD1中,∵S△PBB1=2S△PDD1,
∴边BB1上的高是边DD1上的高的2倍.
①当点P在对称轴的右侧时,x=2(x﹣
),得x=3,
∴点P的坐标为(3,1);
②当点P在对称轴的左侧,同时在y轴的右侧时,x=2(
﹣x),得x=1,
∴点P的坐标为(1,﹣1);
③当点P在y轴的左侧时,x<0,又﹣x=2(
﹣x),
得x=3>0(舍去),
∴所求点P的坐标为(3,1)或(1,﹣1)
【解析】(1)二次函数y=x2+mx+2的图象经过点B,可得B点坐标为(0,2),再根据tan∠OAB=2求出A点坐标,将A代入解析式即可求得函数解析式;(2)根据旋转不变性可轻松求得C点坐标,由于沿y轴运动,故图象开口大小、对称轴均不变,设出解析式,代入C点作标即可求解;(3)由于P点位置不固定,由图可知要分①当点P在对称轴的右侧时,②当点P在对称轴的左侧,同时在y轴的右侧时,③当点P在y轴的左侧时,三种情况讨论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度数;
(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.

(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.

(1)当a=﹣
时,①求h的值;②通过计算判断此球能否过网.
(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为
m的Q处时,乙扣球成功,求a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】列方程(组)解应用题
《九章算术》是中国古代第一部数学专著,也是世界上最早的印刷本数学书它的出现标志着中国古代数学体系的形成.《九章算术》早在隋唐时期即已传入朝鲜、日本并被译成日、俄、德、法等多种文字版本.书中有如下问题:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?
大意是:有几个人一起去买一件物品,如果每人出8元,则多了3元;如果每人出7元,则少了4元钱,问有多少人?该物品价值多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.

(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且AD=CD,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=
,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)2x3y·(-4xy3z4);
(2)5a2·(3a3)2;
(3)(-
x2y)3·6x3y4·(3xy2)2.
相关试题